zerotrie/builder/
mod.rs

1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5//! # ZeroTrie Builder
6//!
7//! There are two implementations of the ZeroTrie Builder:
8//!
9//! - [konst::ZeroTrieBuilderConst] allows for human-readable const construction
10//! - [nonconst::ZeroTrieBuilder] has the full feaure set but requires `alloc`
11//!
12//! The two builders follow the same algorithm but have different capabilities.
13//!
14//! ## Builder Algorithm Overview
15//!
16//! The tries are built backwards, from the last node to the first node. The key step of the
17//! algorithm is **determining what is the next node to prepend.**
18//!
19//! In the simple case of [`ZeroTrieSimpleAscii`], all nodes are binary-search, so if the input
20//! strings are provided in lexicographic order, there is a simple, deterministic method for
21//! identifying the next node. This insight is what enables us to make the const builder.
22//!
23//! The builder works with the following intermediate state variables:
24//!
25//! - `prefix_len` indicates the byte index we are currently processing.
26//! - `i` and `j` bracket a window of strings in the input that share the same prefix.
27//! - `current_len` is the length in bytes of the current self-contained trie.
28//! - `lengths_stack` contains metadata for branch nodes.
29//!
30//! What follows is a verbal explanation of the build steps for a trie containing:
31//!
32//! - "" → 11
33//! - "ad" → 22
34//! - "adef" → 33
35//! - "adghk" → 44
36//!
37//! When a node is prepended, it is shown in **boldface**.
38//!
39//! 1. Initialize the builder by setting `i=3`, `j=4`, `prefix_len=5` (the last string),
40//!    `current_len=0`, and `lengths_stack` empty. Start the main loop.
41//! 2. Top of loop. The string at `i` is equal in length to `prefix_len`, so we prepend
42//!    our first node: a **value node 44**, which requires a 2-byte varint. Increase
43//!    `current_len` to 2.
44//! 3. Reduce `prefix_len` to 4, read our `key_ascii="k"`, and recalculate `i` and `j`
45//!    _(this calculation is a long chunk of code in the builder impls)_. Since there is no
46//!    other string with the prefix "adgh", `i` and `j` stay the same, we prepend an
47//!    **ASCII node "k"**, increase `current_len` to 3, and continue the main loop.
48//! 4. Top of loop. The string at `i` is of length 5, but `prefix_len` is 4, so there is
49//!    no value node to prepend.
50//! 5. Reduce `prefix_len` to 3, read our `key_ascii="h"`, and recalculate `i` and `j`.
51//!    There are no other strings sharing the prefix "abg", so we prepend an
52//!    **ASCII node "h"**, increase `current_len` to 4, and continue the main loop.
53//! 6. Top of loop. There is still no value node to prepend.
54//! 7. Reduce `prefix_len` to 2, read our `key_ascii="g"`, and recalculate `i` and `j`.
55//!    We find that `i=1` and `j=4`, the range of strings sharing the prefix "ad". Since
56//!    `i` or `j` changed, proceed to evaluate the branch node.
57//! 8. The last branch byte `ascii_j` for this prefix is "g", which is the same as `key_ascii`,
58//!    so we are the _last_ target of a branch node. Push an entry onto `lengths_stack`:
59//!    `BranchMeta { ascii: "g", cumulative_length: 4, local_length: 4, count: 1 }`.
60//! 9. The first branch byte `ascii_i` for this prefix is "e", which is NOT equal to `key_ascii`,
61//!    so we are _not the first_ target of a branch node. We therefore start evaluating the
62//!    string preceding where we were at the top of the current loop. We set `i=2`, `j=3`,
63//!    `prefix_len=4` (length of the string at `i`), and continue the main loop.
64//! 10. Top of loop. Since the string at `i` is equal in length to `prefix_len`, we prepend a
65//!     **value node 33** (which requires a 2-byte varint) and increase `current_len` to 2.
66//! 11. Reduce `prefix_len` to 3, read our `key_ascii="f"`, and recalculate `i` and `j`.
67//!     They stay the same, so we prepend an **ASCII node "f"**, increase `current_len` to 3,
68//!     and continue the main loop.
69//! 12. Top of loop. No value node this time.
70//! 13. Reduce `prefix_len` to 2, read our `key_ascii="e"`, and recalculate `i` and `j`.
71//!     They go back to `i=1` and `j=4`.
72//! 14. The last branch byte `ascii_j` for this prefix is "g", which is NOT equal to `key_ascii`,
73//!     so we are _not the last_ target of a branch node. We peek at the entry at the front of
74//!     the lengths stack and use it to push another entry onto the stack:
75//!     `BranchMeta { ascii: "e", cumulative_length: 7, local_length: 3, count: 2 }`
76//! 15. The first branch byte `ascii_i` for this prefix is "e", which is the same as `key_ascii`,
77//!     wo we are the _first_ target of a branch node. We can therefore proceed to prepend the
78//!     metadata for the branch node. We peek at the top of the stack and find that there are 2
79//!     tries reachable from this branch and they have a total byte length of 5. We then pull off
80//!     2 entries from the stack into a local variable `branch_metas`. From here, we write out
81//!     the **offset table**, **lookup table**, and **branch head node**, which are determined
82//!     from the metadata entries. We set `current_len` to the length of the two tries plus the
83//!     metadata, which happens to be 11. Then we return to the top of the main loop.
84//! 16. Top of loop. The string at `i` is length 2, which is the same as `prefix_len`, so we
85//!     prepend a **value node 22** (2-byte varint) and increase `current_len` to 13.
86//! 17. Reduce `prefix_len` to 1, read our `key_ascii="d"`, and recalculate `i` and `j`.
87//!     They stay the same, so we prepend an **ASCII node "d"**, increase `current_len` to 14,
88//!     and continue the main loop.
89//! 18. Top of loop. No value node this time.
90//! 19. Reduce `prefix_len` to 0, read our `key_ascii="a"`, and recalculate `i` and `j`.
91//!     They change to `i=0` and `j=4`, since all strings have the empty string as a prefix.
92//!     However, `ascii_i` and `ascii_j` both equal `key_ascii`, so we prepend **ASCII node "a"**,
93//!     increase `current_len` to 15, and continue the main loop.
94//! 16. Top of loop. The string at `i` is length 0, which is the same as `prefix_len`, so we
95//!     prepend a **value node 11** and increase `current_len` to 16.
96//! 17. We can no longer reduce `prefix_len`, so our trie is complete.
97//!
98//! ## Perfect Hash Reordering
99//!
100//! When the PHF is added to the mix, the main change is that the strings are no longer in sorted
101//! order when they are in the trie. To resolve this issue, when adding a branch node, the target
102//! tries are rearranged in-place in the buffer to be in the correct order for the PHF.
103//!
104//! ## Example
105//!
106//! Here is the output of the trie described above.
107//!
108//! ```
109//! use zerotrie::ZeroTrieSimpleAscii;
110//!
111//! const DATA: [(&str, usize); 4] =
112//!     [("", 11), ("ad", 22), ("adef", 33), ("adghk", 44)];
113//!
114//! // As demonstrated above, the required capacity for this trie is 16 bytes
115//! const TRIE: ZeroTrieSimpleAscii<[u8; 16]> =
116//!     ZeroTrieSimpleAscii::from_sorted_str_tuples(&DATA);
117//!
118//! assert_eq!(
119//!     TRIE.as_bytes(),
120//!     &[
121//!         0x8B, // value node 11
122//!         b'a', // ASCII node 'a'
123//!         b'd', // ASCII node 'd'
124//!         0x90, // value node 22 lead byte
125//!         0x06, // value node 22 trail byte
126//!         0xC2, // branch node 2
127//!         b'e', // first target of branch
128//!         b'g', // second target of branch
129//!         3,    // offset
130//!         b'f', // ASCII node 'f'
131//!         0x90, // value node 33 lead byte
132//!         0x11, // value node 33 trail byte
133//!         b'h', // ASCII node 'h'
134//!         b'k', // ASCII node 'k'
135//!         0x90, // value node 44 lead byte
136//!         0x1C, // value node 44 trail byte
137//!     ]
138//! );
139//!
140//! assert_eq!(TRIE.get(b""), Some(11));
141//! assert_eq!(TRIE.get(b"ad"), Some(22));
142//! assert_eq!(TRIE.get(b"adef"), Some(33));
143//! assert_eq!(TRIE.get(b"adghk"), Some(44));
144//! assert_eq!(TRIE.get(b"unknown"), None);
145//! ```
146
147mod branch_meta;
148pub(crate) mod bytestr;
149pub(crate) mod konst;
150#[cfg(feature = "litemap")]
151mod litemap;
152#[cfg(feature = "alloc")]
153pub(crate) mod nonconst;
154
155use bytestr::ByteStr;
156
157use super::ZeroTrieSimpleAscii;
158
159impl<const N: usize> ZeroTrieSimpleAscii<[u8; N]> {
160    /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
161    ///
162    /// This function needs to know the exact length of the resulting trie at compile time. To
163    /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
164    /// compile error which will tell you how to set `N`, like this:
165    ///
166    /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
167    ///
168    /// That error message says you need to set `N` to 17.
169    ///
170    /// Also see [`Self::from_sorted_str_tuples`].
171    ///
172    /// # Panics
173    ///
174    /// Panics if `items` is not sorted or if `N` is not correct.
175    ///
176    /// # Examples
177    ///
178    /// Create a `const` ZeroTrieSimpleAscii at compile time:
179    ///
180    /// ```
181    /// use zerotrie::ZeroTrieSimpleAscii;
182    ///
183    /// // The required capacity for this trie happens to be 17 bytes
184    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
185    ///     ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
186    ///         (b"bar", 2),
187    ///         (b"bazzoo", 3),
188    ///         (b"foo", 1),
189    ///     ]);
190    ///
191    /// assert_eq!(TRIE.get(b"foo"), Some(1));
192    /// assert_eq!(TRIE.get(b"bar"), Some(2));
193    /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
194    /// assert_eq!(TRIE.get(b"unknown"), None);
195    /// ```
196    ///
197    /// Panics if strings are not sorted:
198    ///
199    /// ```compile_fail
200    /// # use zerotrie::ZeroTrieSimpleAscii;
201    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
202    ///     (b"foo", 1),
203    ///     (b"bar", 2),
204    ///     (b"bazzoo", 3),
205    /// ]);
206    /// ```
207    ///
208    /// Panics if capacity is too small:
209    ///
210    /// ```compile_fail
211    /// # use zerotrie::ZeroTrieSimpleAscii;
212    /// const TRIE: ZeroTrieSimpleAscii<[u8; 15]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
213    ///     (b"bar", 2),
214    ///     (b"bazzoo", 3),
215    ///     (b"foo", 1),
216    /// ]);
217    /// ```
218    ///
219    /// Panics if capacity is too large:
220    ///
221    /// ```compile_fail
222    /// # use zerotrie::ZeroTrieSimpleAscii;
223    /// const TRIE: ZeroTrieSimpleAscii<[u8; 20]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
224    ///     (b"bar", 2),
225    ///     (b"bazzoo", 3),
226    ///     (b"foo", 1),
227    /// ]);
228    /// ```
229    pub const fn from_sorted_u8_tuples(tuples: &[(&[u8], usize)]) -> Self {
230        use konst::*;
231        let byte_str_slice = ByteStr::from_byte_slice_with_value(tuples);
232        let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
233        match result {
234            Ok(s) => Self::from_store(s.build_or_panic()),
235            Err(_) => panic!("Failed to build ZeroTrie"),
236        }
237    }
238
239    /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
240    ///
241    /// This function needs to know the exact length of the resulting trie at compile time. To
242    /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
243    /// compile error which will tell you how to set `N`, like this:
244    ///
245    /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
246    ///
247    /// That error message says you need to set `N` to 17.
248    ///
249    /// Also see [`Self::from_sorted_u8_tuples`].
250    ///
251    /// # Panics
252    ///
253    /// Panics if `items` is not sorted, if `N` is not correct, or if any of the strings contain
254    /// non-ASCII characters.
255    ///
256    /// # Examples
257    ///
258    /// Create a `const` ZeroTrieSimpleAscii at compile time:
259    ///
260    /// ```
261    /// use zerotrie::ZeroTrieSimpleAscii;
262    ///
263    /// // The required capacity for this trie happens to be 17 bytes
264    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
265    ///     ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
266    ///         ("bar", 2),
267    ///         ("bazzoo", 3),
268    ///         ("foo", 1),
269    ///     ]);
270    ///
271    /// assert_eq!(TRIE.get(b"foo"), Some(1));
272    /// assert_eq!(TRIE.get(b"bar"), Some(2));
273    /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
274    /// assert_eq!(TRIE.get(b"unknown"), None);
275    /// ```
276    ///
277    /// Panics if the strings are not ASCII:
278    ///
279    /// ```compile_fail
280    /// # use zerotrie::ZeroTrieSimpleAscii;
281    /// const TRIE: ZeroTrieSimpleAscii<[u8; 100]> = ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
282    ///     ("bár", 2),
283    ///     ("båzzöo", 3),
284    ///     ("foo", 1),
285    /// ]);
286    /// ```
287    pub const fn from_sorted_str_tuples(tuples: &[(&str, usize)]) -> Self {
288        use konst::*;
289        let byte_str_slice = ByteStr::from_str_slice_with_value(tuples);
290        // 100 is the value of `K`, the size of the lengths stack. If compile errors are
291        // encountered, this number may need to be increased.
292        let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
293        match result {
294            Ok(s) => Self::from_store(s.build_or_panic()),
295            Err(_) => panic!("Failed to build ZeroTrie"),
296        }
297    }
298}