assimp/import/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
//! The `import` module contains functionality for importing scenes.
//!
//! TODO write better documentation, at the moment it's mostly copied from Assimp and some of it
//! is incorrect/irrelevant.
//!
//! # Examples
//! ```
//! use assimp::import::Importer;
//!
//! fn main() {
//! let importer = Importer::new();
//! let scene = importer.read_file("examples/box.obj");
//! }
//! ```
use std::ffi::{CStr, CString};
use std::mem;
use std::ptr;
use std::str;
use ffi::*;
use ffi::config::*;
use math::matrix4::*;
use scene::*;
pub mod structs;
use self::structs::*;
/// The `Importer` type.
///
/// See [module-level documentation](index.html) for examples.
pub struct Importer {
property_store: *mut AiPropertyStore,
flags: AiPostProcessSteps
}
impl Importer {
/// Create a new Importer.
pub fn new() -> Importer {
Importer {
property_store: unsafe { aiCreatePropertyStore() },
flags: AiPostProcessSteps::empty()
}
}
/// Load a scene from the specified file.
///
/// If the call succeeds, return value is `Ok`, containing the loaded `Scene` structure.
/// If the call fails, return value is `Err`, containing the error string returned from
/// the Assimp library.
pub fn read_file<'a>(&self, file: &str) -> Result<Scene<'a>, &str> {
let cstr = CString::new(file).unwrap();
let raw_scene = unsafe {
aiImportFileExWithProperties(
cstr.as_ptr(),
self.flags,
ptr::null_mut(),
self.property_store)
};
if !raw_scene.is_null() {
Ok(Scene::from_raw(raw_scene))
} else {
let error_str = unsafe { aiGetErrorString() };
if error_str.is_null() {
Err("Unknown error")
} else {
unsafe {
let cstr = CStr::from_ptr(error_str);
match str::from_utf8(cstr.to_bytes()) {
Ok(s) => Err(s),
Err(_) => Err("Unknown error")
}
}
}
}
}
/// Load a scene from a string.
///
/// If the call succeeds, return value is `Ok`, containing the loaded `Scene` structure.
/// If the call fails, return value is `Err`, containing the error string returned from
/// the Assimp library.
pub fn read_string<'a>(&self, data: &str) -> Result<Scene<'a>, &str> {
let cstr = CString::new(data).unwrap();
let raw_scene = unsafe {
aiImportFileFromMemoryWithProperties(
cstr.as_ptr(),
data.len() as u32,
self.flags,
ptr::null_mut(),
self.property_store)
};
if !raw_scene.is_null() {
Ok(Scene::from_raw(raw_scene))
} else {
let error_str = unsafe { aiGetErrorString() };
if error_str.is_null() {
Err("Unknown error")
} else {
unsafe {
let cstr = CStr::from_ptr(error_str);
match str::from_utf8(cstr.to_bytes()) {
Ok(s) => Err(s),
Err(_) => Err("Unknown error")
}
}
}
}
}
/// Apply post-processing to an already-imported scene.
///
/// This performs all enabled post-processing steps on an already imported scene. The main
/// use case for this is to inspect the scene returned by `read_file` before choosing which
/// additional post-process steps to apply.
///
/// Due to how the Assimp C API works, this isn't as useful as it should be. Currently it isn't
/// possible to configure properties of post-processing steps after the initial import.
///
/// # Return value
/// The new scene, with new post-processing steps applied. Note that it is possible for this
/// method to fail, in which case the return value is `Err`.
pub fn apply_postprocessing<'a>(&'a self, scene: Scene<'a>) -> Result<Scene, &str> {
let raw_scene = unsafe { aiApplyPostProcessing(scene.to_raw(), self.flags) };
if !raw_scene.is_null() {
// Return original scene, Assimp applies post-processing in-place so returning
// a new scene object would cause the scene to get double-dropped.
Ok(scene)
} else {
// Assimp frees the scene on failure, dropping would cause the memory to be
// freed twice so use mem::forget to prevent that happening.
mem::forget(scene);
Err("apply_postprocessing failed, see output log for errors.")
}
}
/// Enables time measurements.
///
/// If enabled, measures the time needed for each part of the loading process (i.e. IO time,
/// importing, postprocessing, ..) and dumps these timings to the output log.
pub fn measure_time(&mut self, enable: bool) {
self.set_bool_property(GLOB_MEASURE_TIME, enable);
}
/// A hint to Assimp to favour speed against import quality.
///
/// Enabling this option may result in faster loading, but it needn't. It represents just a hint
/// to loaders and post-processing steps to use faster code paths, if possible.
pub fn favour_speed(&mut self, enable: bool) {
self.set_bool_property(FAVOUR_SPEED, enable);
}
/// Helper method to set or clear the appropriate import flag
fn set_import_flag(&mut self, flag: AiPostProcessSteps, value: bool) {
if value {
self.flags.insert(flag)
} else {
self.flags.remove(flag)
}
}
/// Helper method to set a boolean import property.
fn set_bool_property(&mut self, name: &str, value: bool) {
self.set_int_property(name, value as i32)
}
/// Helper method to set an integer import property.
fn set_int_property(&mut self, name: &str, value: i32) {
let cstr = CString::new(name).unwrap();
unsafe { aiSetImportPropertyInteger(self.property_store, cstr.as_ptr(), value); }
}
/// Helper method to set a floating point import property.
fn set_float_property(&mut self, name: &str, value: f32) {
let cstr = CString::new(name).unwrap();
unsafe { aiSetImportPropertyFloat(self.property_store, cstr.as_ptr(), value); }
}
/// Helper method to set a 4x4 matrix import property.
fn set_matrix_property(&mut self, name: &str, value: Matrix4x4) {
let cstr = CString::new(name).unwrap();
unsafe { aiSetImportPropertyMatrix(self.property_store, cstr.as_ptr(), &*value); }
}
/// Helper method to set a string import property.
fn set_string_property(&mut self, name: &str, value: &str) {
let cstr = CString::new(name).unwrap();
let aistr: AiString = From::from(value);
unsafe { aiSetImportPropertyString(self.property_store, cstr.as_ptr(), &aistr) }
}
/// Calculates the tangents and bitangents for the imported meshes.
///
/// Does nothing if a mesh does not have normals. You might want this post processing step to be
/// executed if you plan to use tangent space calculations such as normal mapping applied to the
/// meshes. The `max_smoothing_angle` property allows you to specify a maximum smoothing angle
/// for the algorithm. However, usually you'll want to leave it at the default value.
pub fn calc_tangent_space<F: Fn(&mut CalcTangentSpace)>(&mut self, closure: F) {
let mut args = CalcTangentSpace::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_CALC_TANGENT_SPACE, args.enable);
if args.enable {
self.set_float_property(PP_CT_MAX_SMOOTHING_ANGLE, args.max_smoothing_angle);
self.set_int_property(PP_CT_TEXTURE_CHANNEL_INDEX, args.texture_channel);
}
}
/// Identifies and joins identical vertex data sets within all imported meshes.
///
/// After this step is run, each mesh contains unique vertices, so a vertex may be used by
/// multiple faces. You usually want to use this post processing step. If your application deals
/// with indexed geometry, this step is compulsory or you'll just waste rendering time.
/// If this flag is not specified</b>, no vertices are referenced by more than one face and
/// no index buffer is required for rendering.
pub fn join_identical_vertices(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_JOIN_IDENTICAL_VERTICES, enable);
}
/// Converts all the imported data to a left-handed coordinate space.
///
/// By default the data is returned in a right-handed coordinate space (which OpenGL prefers).
/// In this space, +X points to the right, +Z points towards the viewer, and +Y points upwards.
/// In the DirectX coordinate space +X points to the right, +Y points upwards, and +Z points
/// away from the viewer.
///
/// You'll probably want to consider this flag if you use Direct3D for rendering.
pub fn make_left_handed(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_MAKE_LEFT_HANDED, enable);
}
/// Triangulates all faces of all meshes.
///
/// By default the imported mesh data might contain faces with more than 3 indices. For
/// rendering you'll usually want all faces to be triangles. This post processing step splits up
/// faces with more than 3 indices into triangles. Line and point primitives are *not* modified!
/// If you want 'triangles only' with no other kinds of primitives, try the following solution:
///
/// * Enable both `triangulate` and `sort_by_primitive_type`
/// * Ignore all point and line meshes when you process assimp's output
pub fn triangulate(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_TRIANGULATE, enable);
}
/// Removes some parts of the data structure (animations, materials, light sources, cameras,
/// textures, vertex components).
///
/// The components to be removed are specified in the `flags` property. This is quite useful
/// if you don't need all parts of the output structure. Vertex colors are rarely used today for
/// example... Calling this step to remove unneeded data from the pipeline as early as possible
/// results in increased performance and a more optimized output data structure.
///
/// This step is also useful if you want to force Assimp to recompute normals or tangents.
/// The corresponding steps don't recompute them if they're already there (loaded from the
/// source asset). By using this step you can make sure they are NOT there.
///
/// This flag is a poor one, mainly because its purpose is usually misunderstood. Consider the
/// following case: a 3D model has been exported from a CAD app, and it has per-face vertex
/// colors. Vertex positions can't be shared, thus the `join_identical_vertices` step fails to
/// optimize the data because of these nasty little vertex colors. Most apps don't even process
/// them, so it's all for nothing. By using this step, unneeded components are excluded as early
/// as possible, thus opening more room for internal optimizations.
pub fn remove_component<F: Fn(&mut RemoveComponent)>(&mut self, closure: F) {
use self::structs::ComponentType::*;
let mut args = RemoveComponent::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_REMOVE_COMPONENT, args.enable);
if args.enable {
let flags = args.components.iter().fold(0, |x, &c|
x | match c {
Normals => AICOMPONENT_NORMALS,
TangentsAndBitangents => AICOMPONENT_TANGENTS_AND_BITANGENTS,
Colors => AICOMPONENT_COLORS,
TexCoords => AICOMPONENT_TEXCOORDS,
BoneWeights => AICOMPONENT_BONE_WEIGHTS,
Animations => AICOMPONENT_ANIMATIONS,
Textures => AICOMPONENT_TEXTURES,
Lights => AICOMPONENT_LIGHTS,
Cameras => AICOMPONENT_CAMERAS,
Meshes => AICOMPONENT_MESHES,
Materials => AICOMPONENT_MATERIALS
}.bits()
);
self.set_int_property(PP_RVC_FLAGS, flags as i32);
}
}
/// Generates normals for imported meshes.
///
/// This is ignored if normals are already there at the time this flag is evaluated. Model
/// importers try to load them from the source file, so they're usually already there.
///
/// The `smooth` property specifies how normals are calculated. When set to false, normals are
/// calculated per face, and shared between all points of a single face, so a single point can
/// have multiple normals, which forces the library to duplicate vertices in some cases.
///
/// When set to true, normals are calculated per vertex. The `max_smoothing_angle` property
/// allows you to specify an angle maximum for the normal smoothing algorithm. Normals exceeding
/// this limit are not smoothed, resulting in a hard seam between two faces. Using a decent
/// angle here (e.g. 80 degrees) results in very good visual appearance.
pub fn generate_normals<F: Fn(&mut GenerateNormals)>(&mut self, closure: F) {
let mut args = GenerateNormals::default();
closure(&mut args);
if args.enable {
if args.smooth {
self.flags.insert(AIPROCESS_GEN_SMOOTH_NORMALS);
self.set_float_property(PP_GSN_MAX_SMOOTHING_ANGLE, args.max_smoothing_angle);
} else {
self.flags.insert(AIPROCESS_GEN_NORMALS);
}
} else {
self.flags.remove(AIPROCESS_GEN_NORMALS | AIPROCESS_GEN_SMOOTH_NORMALS);
}
}
/// Splits large meshes into smaller sub-meshes.
///
/// This is quite useful for real-time rendering, where the number of triangles which can be
/// maximally processed in a single draw-call is limited by the video driver/hardware. The
/// maximum vertex buffer is usually limited too. Both requirements can be met with this step:
/// you may specify both a triangle and vertex limit for a single mesh.
///
/// The split limits can (and should!) be set through the `vertex_limit` and `triangle_limit`
/// properties.
///
/// Note that splitting is generally a time-consuming task, but only if there's something to
/// split. The use of this step is recommended for most users.
pub fn split_large_meshes<F: Fn(&mut SplitLargeMeshes)>(&mut self, closure: F) {
let mut args = SplitLargeMeshes::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_SPLIT_LARGE_MESHES, args.enable);
if args.enable {
self.set_int_property(PP_SLM_TRIANGLE_LIMIT, args.triangle_limit);
self.set_int_property(PP_SLM_VERTEX_LIMIT, args.vertex_limit);
}
}
/// Removes the node graph and pre-transforms all vertices with the local transformation
/// matrices of their nodes.
///
/// The output scene still contains nodes, however there is only a root node with children, each
/// one referencing only one mesh, and each mesh referencing one material. For rendering, you
/// can simply render all meshes in order - you don't need to pay attention to local
/// transformations and the node hierarchy. Animations are removed during this step.
///
/// This step is intended for applications without a scenegraph. The step CAN cause some
/// problems: if e.g. a mesh of the asset contains normals and another, using the same material
/// index, does not, they will be brought together, but the first meshes's part of the normal
/// list is zeroed. However, these artifacts are rare.
pub fn pre_transform_vertices<F: Fn(&mut PreTransformVertices)>(&mut self, closure: F) {
let mut args = PreTransformVertices::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_PRE_TRANSFORM_VERTICES, args.enable);
if args.enable {
self.set_bool_property(PP_PTV_KEEP_HIERARCHY, args.keep_hierarchy);
self.set_bool_property(PP_PTV_NORMALIZE, args.normalize);
self.set_bool_property(PP_PTV_ADD_ROOT_TRANSFORMATION, args.add_root_transformation);
self.set_matrix_property(PP_PTV_ROOT_TRANSFORMATION, args.root_transformation);
}
}
/// Limits the number of bones simultaneously affecting a single vertex to a maximum value.
///
/// If any vertex is affected by more than the maximum number of bones, the least important
/// vertex weights are removed and the remaining vertex weights are renormalized so that the
/// weights still sum up to 1. The default bone weight limit is 4, but you can use the
/// `max_weights` property to supply your own limit to the post processing step.
///
/// If you intend to perform the skinning in hardware, this post processing step might be of
/// interest to you.
pub fn limit_bone_weights<F: Fn(&mut LimitBoneWeights)>(&mut self, closure: F) {
let mut args = LimitBoneWeights::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_LIMIT_BONE_WEIGHTS, args.enable);
if args.enable {
self.set_int_property(PP_LBW_MAX_WEIGHTS, args.max_weights);
}
}
/// Validates the imported scene data structure.
///
/// This makes sure that all indices are valid, all animations and bones are linked correctly,
/// all material references are correct .. etc.
///
/// It is recommended that you capture Assimp's log output if you use this flag, so you can
/// easily find out what's wrong if a file fails the validation. The validator is quite strict
/// and will find *all* inconsistencies in the data structure... It is recommended that plugin
/// developers use it to debug their loaders. There are two types of validation failures:
///
/// * Error: Error: There's something wrong with the imported data. Further postprocessing is
/// not possible and the data is not usable at all. The import fails.
/// #Importer::GetErrorString() or #aiGetErrorString() carry the error message around.
/// * Warning: There are some minor issues (e.g. 1000000 animation keyframes with the same
/// time), but further postprocessing and use of the data structure is still safe. Warning
/// details are written to the log file, <tt>#AI_SCENE_FLAGS_VALIDATION_WARNING</tt> is set
/// in #aiScene::mFlags</li>
///
/// This post-processing step is not time-consuming. Its use is not compulsory, but recommended.
pub fn validate_data_structure(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_VALIDATE_DATA_STRUCTURE, enable);
}
/// Reorders triangles for better vertex cache locality.
///
/// The step tries to improve the ACMR (average post-transform vertex cache miss ratio) for all
/// meshes. The implementation runs in O(n) and is roughly based on the 'tipsify' algorithm (see
/// [this paper](http://www.cs.princeton.edu/gfx/pubs/Sander_2007_%3ETR/tipsy.pdf)).
///
/// If you intend to render huge models in hardware, this step might be of interest to you.
/// The `cache_size` property can be used to fine-tune the cache optimization.
pub fn improve_cache_locality<F: Fn(&mut ImproveCacheLocality)>(&mut self, closure: F) {
let mut args = ImproveCacheLocality::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_IMPROVE_CACHE_LOCALITY, args.enable);
if args.enable {
self.set_int_property(PP_ICL_PTCACHE_SIZE, args.cache_size);
}
}
/// Searches for redundant/unreferenced materials and removes them.
///
/// This is especially useful in combination with the `pre_transform_vertices` and
/// `optimize_meshes` steps. Both join small meshes with equal characteristics, but they can't
/// do their work if two meshes have different materials. Because several material settings are
/// lost during Assimp's import filters, (and because many exporters don't check for redundant
/// materials), huge models often have materials which are are defined several times with
/// exactly the same settings.
///
/// Several material settings not contributing to the final appearance of a surface are ignored
/// in all comparisons (e.g. the material name). So, if you're passing additional information
/// through the content pipeline (probably using *magic* material names), don't specify this
/// flag. Alternatively take a look at the exclude_list` property.
pub fn remove_redudant_materials<F: Fn(&mut RemoveRedundantMaterials)>(&mut self, closure: F) {
let mut args = RemoveRedundantMaterials::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_REMOVE_REDUNDANT_MATERIALS, args.enable);
if args.enable {
self.set_string_property(PP_RRM_EXCLUDE_LIST, &args.exclude_list);
}
}
/// This step tries to determine which meshes have normal vectors that are facing inwards and
/// inverts them.
///
/// The algorithm is simple but effective:
/// the bounding box of all vertices + their normals is compared against the volume of the
/// bounding box of all vertices without their normals. This works well for most objects,
/// problems might occur with planar surfaces. However, the step tries to filter such cases.
/// The step inverts all in-facing normals. Generally it is recommended to enable this step,
/// although the result is not always correct.
pub fn fix_infacing_normals(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_FIX_INFACING_NORMALS, enable);
}
/// This step splits meshes with more than one primitive type in homogeneous sub-meshes.
///
/// The step is executed after the triangulation step. After the step returns, just one bit is
/// set in aiMesh::mPrimitiveTypes. This is especially useful for real-time rendering where
/// point and line primitives are often ignored or rendered separately.
///
/// You can use the `types` property to specify which primitive types you need. This can be
/// used to easily exclude lines and points, which are rarely used, from the import.
///
/// # Panics
/// Specifying all possible primitive types for removal is illegal and causes a panic.
pub fn sort_by_primitive_type<F: Fn(&mut SortByPrimitiveType)>(&mut self, closure: F) {
use self::structs::PrimitiveType::*;
let mut args = SortByPrimitiveType::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_SORT_BY_PTYPE, args.enable);
if args.enable {
let flags = args.remove.iter().fold(0, |x, &t|
x | match t {
Point => AIPRIMITIVETYPE_POINT,
Line => AIPRIMITIVETYPE_LINE,
Triangle => AIPRIMITIVETYPE_TRIANGLE,
Polygon => AIPRIMITIVETYPE_POLYGON
}.bits()
);
// Removing all primitives is a bad thing and causes Assimp to segfault when
// used in combination with `validate_data_structure` and `apply_postprocessing`.
if flags == (AIPRIMITIVETYPE_POINT |
AIPRIMITIVETYPE_LINE |
AIPRIMITIVETYPE_TRIANGLE |
AIPRIMITIVETYPE_POLYGON)
.bits() {
panic!("Trying to remove all possible primitive types is illegal.");
}
self.set_int_property(PP_SBP_REMOVE, flags as i32);
}
}
/// This step searches all meshes for degenerate primitives and converts them to proper lines
/// or points.
///
/// A face is 'degenerate' if one or more of its points are identical. To have the degenerate
/// stuff not only detected and collapsed but removed, try one of the following procedures:
///
/// 1. If you support lines and points for rendering but don't want the degenerates:
/// * Enable the `find_degenerates` step.
/// * Set the `remove` property to true. This will cause the step to remove degenerate
/// triangles from the import as soon as they're detected. They won't pass any further
/// pipeline steps.
/// 2. If you don't support lines and points at all:
/// * Enable the `find_degenerates` step.
/// * Enable the `sort_by_primitive_type` step. This moves line and point primitives to
/// separate meshes.
/// * Set the `components` property to aiPrimitiveType_POINTS | aiPrimitiveType_LINES
/// to cause `sort_by_primitive_type` to reject point and line meshes from the scene.
///
/// Degenerate polygons are not necessarily evil and that's why they're not removed by default.
/// There are several file formats which don't support lines or points, and some exporters
/// bypass the format specification and write them as degenerate triangles instead.
pub fn find_degenerates<F: Fn(&mut FindDegenerates)>(&mut self, closure: F) {
let mut args = FindDegenerates::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_FIND_DEGENERATES, args.enable);
if args.enable {
self.set_bool_property(PP_FD_REMOVE, args.remove);
}
}
/// This step searches all meshes for invalid data, such as zeroed normal vectors or invalid UV
/// coords and removes/fixes them. This is intended to get rid of some common exporter errors.
///
/// This is especially useful for normals. If they are invalid, and the step recognizes this,
/// they will be removed and can later be recomputed, i.e. by the `gen_normals` step.
///
/// The step will also remove meshes that are infinitely small and reduce animation tracks
/// consisting of hundreds if redundant keys to a single key.
/// The `accuracy` property decides the accuracy of the check for duplicate animation tracks.
pub fn find_invalid_data<F: Fn(&mut FindInvalidData)>(&mut self, closure: F) {
let mut args = FindInvalidData::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_FIND_INVALID_DATA, args.enable);
if args.enable {
self.set_float_property(PP_FID_ANIM_ACCURACY, args.accuracy);
}
}
/// This step converts non-UV mappings (such as spherical or cylindrical mapping) to proper
/// texture coordinate channels.
///
/// Most applications will support UV mapping only, so you will probably want to specify this
/// step in every case. Note that Assimp is not always able to match the original mapping
/// implementation of the 3D app which produced a model perfectly. It's always better to let the
/// modelling app compute the UV channels - 3ds max, Maya, Blender, LightWave, and Modo do this
/// for example.
///
/// If this step is not requested, you'll need to process the `AI_MATKEY_MAPPING` material
/// property in order to display all assets properly.
pub fn gen_uv_coords(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_GEN_UV_COORDS, enable);
}
/// This step applies per-texture UV transformations and bakes them into stand-alone vtexture
/// coordinate channels.
///
/// UV transformations are specified per-texture - see the `AI_MATKEY_UVTRANSFORM` material key
/// for more information. This step processes all textures with transformed input UV coordinates
/// and generates a new (pre-transformed) UV channel which replaces the old channel. Most
/// applications won't support UV transformations, so you will probably want to specify
/// this step.
///
/// UV transformations are usually implemented in real-time apps by transforming texture
/// coordinates at vertex shader stage with a 3x3 (homogenous) transformation matrix.
pub fn transform_uv_coords<F: Fn(&mut TransformUVCoords)>(&mut self, closure: F) {
use self::structs::UVTransformFlag::*;
let mut args = TransformUVCoords::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_TRANSFORM_UV_COORDS, args.enable);
if args.enable {
let flags = args.flags.iter().fold(0, |x, &f|
x | match f {
Scaling => AI_UVTRAFO_SCALING,
Rotation => AI_UVTRAFO_ROTATION,
Translation => AI_UVTRAFO_TRANSLATION,
All => AI_UVTRAFO_ALL
}.bits()
);
self.set_int_property(PP_TUV_EVALUATE, flags as i32);
}
}
/// This step searches for duplicate meshes and replaces them with references to the first mesh.
///
/// This step takes a while, so don't use it if speed is a concern. Its main purpose is to
/// workaround the fact that many export file formats don't support instanced meshes, so
/// exporters need to duplicate meshes. This step removes the duplicates again. Please note that
/// Assimp does not currently support per-node material assignment to meshes, which means that
/// identical meshes with different materials are currently *not* joined, although this is
/// planned for future versions.
pub fn find_instances(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_FIND_INSTANCES, enable);
}
/// A postprocessing step to reduce the number of meshes.
///
/// This will, in fact, reduce the number of draw calls.
///
/// This is a very effective optimization and is recommended to be used together with
/// `optimize_graph`, if possible. The flag is fully compatible with both `split_large_meshes`
/// and `sort_by_primitive_type`.
pub fn optimize_meshes(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_OPTIMIZE_MESHES, enable);
}
/// A postprocessing step to optimize the scene hierarchy.
///
/// Nodes without animations, bones, lights or cameras assigned are collapsed and joined.
///
/// Node names can be lost during this step. If you use special 'tag nodes' to pass additional
/// information through your content pipeline, use the `exclude_list` property to specify a
/// list of node names you want to be kept. Nodes matching one of the names in this list won't
/// be touched or modified.
///
/// Use this flag with caution. Most simple files will be collapsed to a single node, so
/// complex hierarchies are usually completely lost. This is not useful for editor environments,
/// but probably a very effective optimization if you just want to get the model data, convert
/// it to your own format, and render it as fast as possible.
///
/// This flag is designed to be used with `optimize_meshes` for best results.
///
/// 'Crappy' scenes with thousands of extremely small meshes packed in deeply nested nodes exist
/// for almost all file formats. `optimize_meshes` in combination with `optimize_graph`
/// usually fixes them all and makes them renderable.
pub fn optimize_graph<F: Fn(&mut OptimizeGraph)>(&mut self, closure: F) {
let mut args = OptimizeGraph::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_OPTIMIZE_GRAPH, args.enable);
if args.enable {
self.set_string_property(PP_OG_EXCLUDE_LIST, &args.exclude_list);
}
}
/// This step flips all UV coordinates along the y-axis and adjusts material settings and
/// bitangents accordingly.
///
/// *Output UV coordinate system:*
///
/// ```text
/// 0y|0y ---------- 1x|0y
/// | |
/// | |
/// | |
/// 0x|1y ---------- 1x|1y
/// ```
///
/// You'll probably want to consider this flag if you use Direct3D for rendering.
pub fn flip_uvs(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_FLIP_UVS, enable);
}
/// This step adjusts the output face winding order to be CW.
///
/// The default face winding order is counter clockwise (CCW).
///
/// *Output face order:*
///
/// ```text
/// x2
///
/// x0
/// x1
/// ```
pub fn flip_winding_order(&mut self, enable: bool) {
self.set_import_flag(AIPROCESS_FLIP_WINDING_ORDER, enable);
}
/// This step splits meshes with many bones into sub-meshes so that each submesh has fewer or
/// as many bones as a given limit.
pub fn split_by_bone_count<F: Fn(&mut SplitByBoneCount)>(&mut self, closure: F) {
let mut args = SplitByBoneCount::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_SPLIT_BY_BONE_COUNT, args.enable);
if args.enable {
self.set_int_property(PP_SBBC_MAX_BONES, args.max_bones);
}
}
/// This step removes bones losslessly or according to some threshold.
///
/// In some cases (i.e. formats that require it) exporters are forced to assign dummy bone
/// weights to otherwise static meshes assigned to animated meshes. Full, weight-based skinning
/// is expensive while animating nodes is extremely cheap, so this step is offered to clean up
/// the data in that regard.
///
/// Use the `threshold` property to control this.
/// Use the `all_or_none` property if you want bones removed if and only if all bones within the
/// scene qualify for removal.
pub fn debone<F: Fn(&mut Debone)>(&mut self, closure: F) {
let mut args = Debone::default();
closure(&mut args);
self.set_import_flag(AIPROCESS_DEBONE, args.enable);
if args.enable {
self.set_float_property(PP_DB_THRESHOLD, args.threshold);
self.set_bool_property(PP_DB_ALL_OR_NONE, args.all_or_none);
}
}
/// Global setting to disable generation of skeleton dummy meshes
///
/// Skeleton dummy meshes are generated as a visualization aid in cases which the input data
/// contains no geometry, but only animation data.
pub fn import_no_skeleton_meshes(&mut self, enable: bool) {
self.set_bool_property(IMPORT_NO_SKELETON_MESHES, enable);
}
/// Sets the colormap to be used to decode embedded textures in MDL (Quake or 3DGS) files.
///
/// This must be a valid path to a file. The file is 768 (256*3) bytes large and contains RGB
/// triplets for each of the 256 palette entries. If the file is not found, a default palette
/// (from Quake 1) is used.
///
/// Default: colormap.lmp
pub fn import_mdl_colormap(&mut self, path: &str) {
self.set_string_property(IMPORT_MDL_COLORMAP, path);
}
/// Set whether the FBX importer will merge all geometry layers present in the source file or
/// take only the first.
///
/// Default: true.
pub fn fbx_read_all_geometry_layers(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_ALL_GEOMETRY_LAYERS, enable);
}
/// Set whether the FBX importer will read all materials present in the source file or take only
/// the referenced materials. This has no effect if `fbx_read_materials` is false.
///
/// Default: false.
pub fn fbx_read_all_materials(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_ALL_MATERIALS, enable);
}
/// Set whether the FBX importer will read materials.
///
/// Default: true.
pub fn fbx_read_materials(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_MATERIALS, enable);
}
/// Set whether the FBX importer will read embedded textures.
///
/// Default: true.
pub fn fbx_read_textures(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_TEXTURES, enable);
}
/// Set whether the FBX importer will read cameras.
///
/// Default: true.
pub fn fbx_read_cameras(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_CAMERAS, enable);
}
/// Set whether the FBX importer will read light sources.
///
/// Default: true.
pub fn fbx_read_lights(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_LIGHTS, enable);
}
/// Set whether the FBX importer will read animations.
///
/// Default: true.
pub fn fbx_read_animations(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_READ_ANIMATIONS, enable);
}
/// Set whether the FBX importer will act in strict mode in which only FBX 2013 is supported and
/// any other sub formats are rejected. FBX 2013 is the primary target for the importer, so this
/// format is best supported and well-tested.
///
/// Default: false.
pub fn fbx_strict_mode(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_STRICT_MODE, enable);
}
/// Set whether the FBX importer will preserve pivot points for transformations (as extra
/// nodes). If set to false, pivots and offsets will be evaluated whenever possible.
///
/// Default: true.
pub fn fbx_preserve_pivots(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_PRESERVE_PIVOTS, enable);
}
/// Specifies whether the FBX importer will drop empty animation curves or animation curves
/// which match the bind pose transformation over their entire defined range.
///
/// Default: true.
pub fn fbx_optimize_empty_animation_curves(&mut self, enable: bool) {
self.set_bool_property(IMPORT_FBX_OPTIMIZE_EMPTY_ANIMATION_CURVES, enable);
}
/// Set the vertex animation keyframe to be imported
///
/// Assimp does not support vertex keyframes (only bone animation is supported). The library
/// reads only one frame of models with vertex animations. This option applies to all importers,
/// unless overridden for a specific loader.
///
/// Default: first frame.
pub fn global_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_GLOBAL_KEYFRAME, value);
}
/// Override [`global_keyframe`](#method.global_keyframe) property for the MD3 importer.
pub fn md3_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_MD3_KEYFRAME, value);
}
/// Override [`global_keyframe`](#method.global_keyframe) property for the MD2 importer.
pub fn md2_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_MD2_KEYFRAME, value);
}
/// Override [`global_keyframe`](#method.global_keyframe) property for the MDL importer.
pub fn mdl_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_MDL_KEYFRAME, value);
}
/// Override [`global_keyframe`](#method.global_keyframe) property for the MDC importer.
pub fn mdc_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_MDC_KEYFRAME, value);
}
/// Override [`global_keyframe`](#method.global_keyframe) property for the SMD importer.
pub fn smd_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_SMD_KEYFRAME, value);
}
/// Override [`global_keyframe`](#method.global_keyframe) property for the Unreal importer.
pub fn unreal_keyframe(&mut self, value: i32) {
self.set_int_property(IMPORT_UNREAL_KEYFRAME, value);
}
/// Configures the AC importer to collect all surfaces which have the "Backface cull" flag set
/// in separate meshes.
///
/// Default: true.
pub fn ac_separate_bf_cull(&mut self, enable: bool) {
self.set_bool_property(IMPORT_AC_SEPARATE_BFCULL, enable);
}
/// Configures whether the AC importer evaluates subdivision surfaces (indicated by the presence
/// of the 'subdiv' attribute in the file). By default, Assimp performs the subdivision using
/// the standard Catmull-Clark algorithm.
///
/// Default: true.
pub fn ac_eval_subdivision(&mut self, enable: bool) {
self.set_bool_property(IMPORT_AC_EVAL_SUBDIVISION, enable);
}
/// Configures the Unreal importer to separate faces with different surface flags (e.g.
/// two-sided vs. single-sided).
///
/// Default: true.
pub fn unreal_handle_flags(&mut self, enable: bool) {
self.set_bool_property(UNREAL_HANDLE_FLAGS, enable);
}
/// Configures the terragen importer to compute UVs for terrains, if not given.
/// Furthermore a default texture is assigned.
///
/// Default: false.
pub fn ter_make_uvs(&mut self, enable: bool) {
self.set_bool_property(IMPORT_TER_MAKE_UVS, enable);
}
/// Configures the ASE importer to always reconstruct normal vectors based on the smoothing
/// groups loaded from the file.
///
/// Default: true.
pub fn ase_reconstruct_normals(&mut self, enable: bool) {
self.set_bool_property(IMPORT_ASE_RECONSTRUCT_NORMALS, enable);
}
/// Configures the MD3 importer to detect and process multi-part Quake player models.
///
/// These models usually consist of 3 files, lower.md3, upper.md3 and head.md3. If this property
/// is set to true, Assimp will try to load and combine all three files if one of them is
/// loaded.
///
/// Default: true.
pub fn md3_handle_multipart(&mut self, enable: bool) {
self.set_bool_property(IMPORT_MD3_HANDLE_MULTIPART, enable);
}
/// Tells the MD3 importer which skin files to load.
///
/// When loading MD3 files, Assimp checks whether a file `<md3_file_name>_<skin_name>.skin` is
/// existing. These files are used by Quake III to be able to assign different skins (e.g. red
/// and blue team) to models. 'default', 'red', 'blue' are typical skin names.
///
/// Default: "default".
pub fn md3_skin_name(&mut self, name: &str) {
self.set_string_property(IMPORT_MD3_SKIN_NAME, name);
}
/// Specify the Quake 3 shader file to be used for a particular MD3 file. This can also be a
/// search path.
///
/// By default Assimp's behaviour is as follows: If a MD3 file
/// `<any_path>/models/<any_q3_subdir>/<model_name>/<file_name>.md3` is loaded, the library
/// tries to locate the corresponding shader file in `<any_path>/scripts/<model_name>.shader`.
/// This property overrides this behaviour. It can either specify a full path to the shader to
/// be loaded or alternatively the path (relative or absolute) to the directory where the
/// shaders for all MD3s to be loaded reside. Assimp attempts to open
/// `<dir>/<model_name>.shader` first, `<dir>/<file_name>.shader` is the fallback file.
/// Note that `<dir>` should have a terminal (back)slash.
pub fn md3_shader_src(&mut self, path: &str) {
self.set_string_property(IMPORT_MD3_SHADER_SRC, path);
}
/// Configures the LWO importer to load just one layer from the model.
///
/// LWO files consist of layers and in some cases it could be useful to load only one of them.
/// This property is a string which specifies the name of the layer. If the property is not set
/// the whole LWO model is loaded. Loading fails if the requested layer is not available.
/// The layer name may not be empty.
///
/// Default: all layers are loaded.
pub fn lwo_one_layer_only_str(&mut self, name: &str) {
self.set_string_property(IMPORT_LWO_ONE_LAYER_ONLY, name);
}
/// Configures the LWO importer to load just one layer from the model.
///
/// LWO files consist of layers and in some cases it could be useful to load only one of them.
/// This property is an integer which specifies the index of the layer. If the property is not
/// set the whole LWO model is loaded. Loading fails if the requested layer is not available.
/// The layer index is zero-based.
///
/// Default: all layers are loaded.
pub fn lwo_one_layer_only_int(&mut self, index: i32) {
self.set_int_property(IMPORT_LWO_ONE_LAYER_ONLY, index);
}
/// Configures the MD5 loader to not load the MD5ANIM file for a MD5MESH file automatically.
///
/// The default strategy is to look for a file with the same name but the MD5ANIM extension in
/// the same directory. If it is found, it is loaded and combined with the MD5MESH file. This
/// configuration option can be used to disable this behaviour.
///
/// Default: false.
pub fn md5_no_anim_autoload(&mut self, enable: bool) {
self.set_bool_property(IMPORT_MD5_NO_ANIM_AUTOLOAD, enable);
}
/// Defines the begin of the time range for which the LWS loader evaluates animations and
/// computes aiNodeAnims.
///
/// Assimp provides full conversion of LightWave's envelope system, including pre and post
/// conditions. The loader computes linearly subsampled animation channels with the frame rate
/// given in the LWS file. This property defines the start time. Note: animation channels are
/// only generated if a node has at least one envelope with more than one key assigned. This
/// property is given in frames, '0' is the first frame. By default, if this property is not
/// set, the importer takes the animation start from the input LWS file ('FirstFrame' line)
///
/// Default: taken from file.
pub fn lws_anim_start(&mut self, frame: i32) {
self.set_int_property(IMPORT_LWS_ANIM_START, frame);
}
/// Defines the end of the time range for which the LWS loader evaluates animations and
/// computs aiNodeAnims. See [`lws_anim_start`](#method.lws_anim_start) for more info.
///
/// Default: taken from file.
pub fn lws_anim_end(&mut self, frame: i32) {
self.set_int_property(IMPORT_LWS_ANIM_END, frame);
}
/// Defines the output frame rate of the IRR loader.
///
/// IRR animations are difficult to convert for Assimp and there will always be a loss of
/// quality. This setting defines how many keys per second are returned by the converter.
///
/// Default: 100.
pub fn irr_anim_fps(&mut self, fps: i32) {
self.set_int_property(IMPORT_IRR_ANIM_FPS, fps);
}
/// Ogre Importer will try to find referenced materials from this file.
///
/// Ogre meshes reference with material names, this does not tell Assimp the file where it is
/// located in. Assimp will try to find the source file in the following order:
///
/// 1. `<material-name>.material`
/// 2. `<mesh-filename-base>.material`
/// 3. The material name defined by this config property.
///
/// Default value: Scene.material.
pub fn ogre_material_file(&mut self, file: &str) {
self.set_string_property(IMPORT_OGRE_MATERIAL_FILE, file);
}
/// Ogre Importer detect the texture usage from its filename.
///
/// Ogre material texture units do not define texture type, the textures usage depends on the
/// used shader or Ogres fixed pipeline. If this config property is true Assimp will try to
/// detect the type from the textures filename postfix:
///
/// * _n, _nrm, _nrml, _normal, _normals and _normalmap for normal map
/// * _s, _spec, _specular and _specularmap for specular map
/// * _l, _light, _lightmap, _occ and _occlusion for light map
/// * _disp and _displacement for displacement map
///
/// The matching is case insensitive. Post fix is taken between last "_" and last ".". Default
/// behavior is to detect type from lower cased texture unit name by matching against:
/// normalmap, specularmap, lightmap and displacementmap. For both cases if no match is found
/// aiTextureType_DIFFUSE is used.
///
/// Default: false.
pub fn ogre_texture_type_from_filename(&mut self, enable: bool) {
self.set_bool_property(IMPORT_OGRE_TEXTURETYPE_FROM_FILENAME, enable);
}
/// Specifies whether the IFC loader skips over IfcSpace elements.
///
/// IfcSpace elements (and their geometric representations) are used to represent, well, free
/// space in a building storey.
///
/// Default: true.
pub fn ifc_skip_space_representations(&mut self, enable: bool) {
self.set_bool_property(IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS, enable);
}
/// Specifies whether the IFC loader skips over shape representations of type 'Curve2D'.
///
/// A lot of files contain both a faceted mesh representation and a outline with a presentation
/// type of 'Curve2D'. Currently Assimp doesn't convert those, so turning this option off just
// clutters the log with errors.
///
/// Default: true.
pub fn ifc_skip_curve_representations(&mut self, enable: bool) {
self.set_bool_property(IMPORT_IFC_SKIP_CURVE_REPRESENTATIONS, enable);
}
/// Specifies whether the IFC loader will use its own, custom triangulation algorithm to
/// triangulate wall and floor meshes.
///
/// If this property is set to false, walls will be either triangulated by `triangulate`
/// [`triangulate`](#method.triangulate) or will be passed through as huge polygons with
/// faked holes (i.e. holes that are connected with the outer boundary using a dummy edge).
/// It is highly recommended to set this property to true if you want triangulated data because
/// `triangulate` is known to have problems with the kind of polygons that the IFC loader spits
/// out for complicated meshes.
///
/// Default: true.
pub fn ifc_custom_triangulation(&mut self, enable: bool) {
self.set_bool_property(IMPORT_IFC_CUSTOM_TRIANGULATION, enable);
}
/// Tells the Collada importer to ignore the up direction specified in the file.
///
/// Default: false.
pub fn collada_ignore_up_direction(&mut self, enable: bool) {
self.set_bool_property(IMPORT_COLLADA_IGNORE_UP_DIRECTION, enable);
}
/// Get a list of all file extensions supported by Assimp.
///
/// If a file extension is contained in the list this does, of course, not mean that Assimp is
/// able to load all files with this extension.
///
/// # Return value
/// `Vec<String>` containing the supported file extensions in lower-case with no leading
/// wildcard or period characters, e.g. "3ds", "obj", "fbx".
pub fn get_extension_list() -> Vec<String> {
let mut ext_list = AiString::default();
unsafe { aiGetExtensionList(&mut ext_list) };
let extensions = ext_list.as_ref().split(';');
extensions.map(|x| x.trim_left_matches("*.").to_owned()).collect()
}
}
impl Drop for Importer {
fn drop(&mut self) {
unsafe { aiReleasePropertyStore(self.property_store) }
}
}