nalgebra/geometry/dual_quaternion_construction.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
use crate::{
DualQuaternion, Isometry3, Quaternion, Scalar, SimdRealField, Translation3, UnitDualQuaternion,
UnitQuaternion,
};
use num::{One, Zero};
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use simba::scalar::SupersetOf;
impl<T: Scalar> DualQuaternion<T> {
/// Creates a dual quaternion from its rotation and translation components.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(rot, trans);
/// assert_eq!(dq.real.w, 1.0);
/// ```
#[inline]
pub fn from_real_and_dual(real: Quaternion<T>, dual: Quaternion<T>) -> Self {
Self { real, dual }
}
/// The dual quaternion multiplicative identity.
///
/// # Example
///
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let dq1 = DualQuaternion::identity();
/// let dq2 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.,2.,3.,4.),
/// Quaternion::new(5.,6.,7.,8.)
/// );
///
/// assert_eq!(dq1 * dq2, dq2);
/// assert_eq!(dq2 * dq1, dq2);
/// ```
#[inline]
pub fn identity() -> Self
where
T: SimdRealField,
{
Self::from_real_and_dual(
Quaternion::from_real(T::one()),
Quaternion::from_real(T::zero()),
)
}
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, DualQuaternion};
/// let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
/// let q2 = q.cast::<f32>();
/// assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));
/// ```
pub fn cast<To: Scalar>(self) -> DualQuaternion<To>
where
DualQuaternion<To>: SupersetOf<Self>,
{
crate::convert(self)
}
}
impl<T: SimdRealField> DualQuaternion<T>
where
T::Element: SimdRealField,
{
/// Creates a dual quaternion from only its real part, with no translation
/// component.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
///
/// let dq = DualQuaternion::from_real(rot);
/// assert_eq!(dq.real.w, 1.0);
/// assert_eq!(dq.dual.w, 0.0);
/// ```
#[inline]
pub fn from_real(real: Quaternion<T>) -> Self {
Self {
real,
dual: Quaternion::zero(),
}
}
}
impl<T: SimdRealField> One for DualQuaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<T: SimdRealField> Zero for DualQuaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn zero() -> Self {
DualQuaternion::from_real_and_dual(Quaternion::zero(), Quaternion::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.real.is_zero() && self.dual.is_zero()
}
}
#[cfg(feature = "arbitrary")]
impl<T> Arbitrary for DualQuaternion<T>
where
T: SimdRealField + Arbitrary + Send,
T::Element: SimdRealField,
{
#[inline]
fn arbitrary(rng: &mut Gen) -> Self {
Self::from_real_and_dual(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng))
}
}
impl<T: SimdRealField> UnitDualQuaternion<T> {
/// The unit dual quaternion multiplicative identity, which also represents
/// the identity transformation as an isometry.
///
/// ```
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let ident = UnitDualQuaternion::identity();
/// let point = Point3::new(1.0, -4.3, 3.33);
///
/// assert_eq!(ident * point, point);
/// assert_eq!(ident, ident.inverse());
/// ```
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(DualQuaternion::identity())
}
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::UnitDualQuaternion;
/// let q = UnitDualQuaternion::<f64>::identity();
/// let q2 = q.cast::<f32>();
/// assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
/// ```
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To>
where
UnitDualQuaternion<To>: SupersetOf<Self>,
{
crate::convert(self)
}
}
impl<T: SimdRealField> UnitDualQuaternion<T>
where
T::Element: SimdRealField,
{
/// Return a dual quaternion representing the translation and orientation
/// given by the provided rotation quaternion and translation vector.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let dq = UnitDualQuaternion::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let point = Point3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_parts(translation: Translation3<T>, rotation: UnitQuaternion<T>) -> Self {
let half: T = crate::convert(0.5f64);
UnitDualQuaternion::new_unchecked(DualQuaternion {
real: rotation.clone().into_inner(),
dual: Quaternion::from_parts(T::zero(), translation.vector)
* rotation.into_inner()
* half,
})
}
/// Return a unit dual quaternion representing the translation and orientation
/// given by the provided isometry.
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Isometry3, UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
/// let iso = Isometry3::from_parts(
/// Vector3::new(0.0, 3.0, 0.0).into(),
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
/// );
/// let dq = UnitDualQuaternion::from_isometry(&iso);
/// let point = Point3::new(1.0, 2.0, 3.0);
///
/// assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_isometry(isometry: &Isometry3<T>) -> Self {
// TODO: take the isometry by-move instead of cloning it.
let isometry = isometry.clone();
UnitDualQuaternion::from_parts(isometry.translation, isometry.rotation)
}
/// Creates a dual quaternion from a unit quaternion rotation.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitQuaternion, UnitDualQuaternion, Quaternion};
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let rot = UnitQuaternion::new_normalize(q);
///
/// let dq = UnitDualQuaternion::from_rotation(rot);
/// assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6);
/// assert_eq!(dq.as_ref().dual.norm(), 0.0);
/// ```
#[inline]
pub fn from_rotation(rotation: UnitQuaternion<T>) -> Self {
Self::new_unchecked(DualQuaternion::from_real(rotation.into_inner()))
}
}
impl<T: SimdRealField> One for UnitDualQuaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
#[cfg(feature = "arbitrary")]
impl<T> Arbitrary for UnitDualQuaternion<T>
where
T: SimdRealField + Arbitrary + Send,
T::Element: SimdRealField,
{
#[inline]
fn arbitrary(rng: &mut Gen) -> Self {
Self::new_normalize(Arbitrary::arbitrary(rng))
}
}