nalgebra/geometry/
dual_quaternion_construction.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use crate::{
    DualQuaternion, Isometry3, Quaternion, Scalar, SimdRealField, Translation3, UnitDualQuaternion,
    UnitQuaternion,
};
use num::{One, Zero};
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use simba::scalar::SupersetOf;

impl<T: Scalar> DualQuaternion<T> {
    /// Creates a dual quaternion from its rotation and translation components.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
    ///
    /// let dq = DualQuaternion::from_real_and_dual(rot, trans);
    /// assert_eq!(dq.real.w, 1.0);
    /// ```
    #[inline]
    pub fn from_real_and_dual(real: Quaternion<T>, dual: Quaternion<T>) -> Self {
        Self { real, dual }
    }

    /// The dual quaternion multiplicative identity.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{DualQuaternion, Quaternion};
    ///
    /// let dq1 = DualQuaternion::identity();
    /// let dq2 = DualQuaternion::from_real_and_dual(
    ///     Quaternion::new(1.,2.,3.,4.),
    ///     Quaternion::new(5.,6.,7.,8.)
    /// );
    ///
    /// assert_eq!(dq1 * dq2, dq2);
    /// assert_eq!(dq2 * dq1, dq2);
    /// ```
    #[inline]
    pub fn identity() -> Self
    where
        T: SimdRealField,
    {
        Self::from_real_and_dual(
            Quaternion::from_real(T::one()),
            Quaternion::from_real(T::zero()),
        )
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Quaternion, DualQuaternion};
    /// let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
    /// let q2 = q.cast::<f32>();
    /// assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));
    /// ```
    pub fn cast<To: Scalar>(self) -> DualQuaternion<To>
    where
        DualQuaternion<To>: SupersetOf<Self>,
    {
        crate::convert(self)
    }
}

impl<T: SimdRealField> DualQuaternion<T>
where
    T::Element: SimdRealField,
{
    /// Creates a dual quaternion from only its real part, with no translation
    /// component.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DualQuaternion, Quaternion};
    /// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    ///
    /// let dq = DualQuaternion::from_real(rot);
    /// assert_eq!(dq.real.w, 1.0);
    /// assert_eq!(dq.dual.w, 0.0);
    /// ```
    #[inline]
    pub fn from_real(real: Quaternion<T>) -> Self {
        Self {
            real,
            dual: Quaternion::zero(),
        }
    }
}

impl<T: SimdRealField> One for DualQuaternion<T>
where
    T::Element: SimdRealField,
{
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

impl<T: SimdRealField> Zero for DualQuaternion<T>
where
    T::Element: SimdRealField,
{
    #[inline]
    fn zero() -> Self {
        DualQuaternion::from_real_and_dual(Quaternion::zero(), Quaternion::zero())
    }

    #[inline]
    fn is_zero(&self) -> bool {
        self.real.is_zero() && self.dual.is_zero()
    }
}

#[cfg(feature = "arbitrary")]
impl<T> Arbitrary for DualQuaternion<T>
where
    T: SimdRealField + Arbitrary + Send,
    T::Element: SimdRealField,
{
    #[inline]
    fn arbitrary(rng: &mut Gen) -> Self {
        Self::from_real_and_dual(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng))
    }
}

impl<T: SimdRealField> UnitDualQuaternion<T> {
    /// The unit dual quaternion multiplicative identity, which also represents
    /// the identity transformation as an isometry.
    ///
    /// ```
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
    /// let ident = UnitDualQuaternion::identity();
    /// let point = Point3::new(1.0, -4.3, 3.33);
    ///
    /// assert_eq!(ident * point, point);
    /// assert_eq!(ident, ident.inverse());
    /// ```
    #[inline]
    pub fn identity() -> Self {
        Self::new_unchecked(DualQuaternion::identity())
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::UnitDualQuaternion;
    /// let q = UnitDualQuaternion::<f64>::identity();
    /// let q2 = q.cast::<f32>();
    /// assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
    /// ```
    pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To>
    where
        UnitDualQuaternion<To>: SupersetOf<Self>,
    {
        crate::convert(self)
    }
}

impl<T: SimdRealField> UnitDualQuaternion<T>
where
    T::Element: SimdRealField,
{
    /// Return a dual quaternion representing the translation and orientation
    /// given by the provided rotation quaternion and translation vector.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
    /// let dq = UnitDualQuaternion::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let point = Point3::new(1.0, 2.0, 3.0);
    ///
    /// assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn from_parts(translation: Translation3<T>, rotation: UnitQuaternion<T>) -> Self {
        let half: T = crate::convert(0.5f64);
        UnitDualQuaternion::new_unchecked(DualQuaternion {
            real: rotation.clone().into_inner(),
            dual: Quaternion::from_parts(T::zero(), translation.vector)
                * rotation.into_inner()
                * half,
        })
    }

    /// Return a unit dual quaternion representing the translation and orientation
    /// given by the provided isometry.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Isometry3, UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
    /// let iso = Isometry3::from_parts(
    ///     Vector3::new(0.0, 3.0, 0.0).into(),
    ///     UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
    /// );
    /// let dq = UnitDualQuaternion::from_isometry(&iso);
    /// let point = Point3::new(1.0, 2.0, 3.0);
    ///
    /// assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn from_isometry(isometry: &Isometry3<T>) -> Self {
        // TODO: take the isometry by-move instead of cloning it.
        let isometry = isometry.clone();
        UnitDualQuaternion::from_parts(isometry.translation, isometry.rotation)
    }

    /// Creates a dual quaternion from a unit quaternion rotation.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{UnitQuaternion, UnitDualQuaternion, Quaternion};
    /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
    /// let rot = UnitQuaternion::new_normalize(q);
    ///
    /// let dq = UnitDualQuaternion::from_rotation(rot);
    /// assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6);
    /// assert_eq!(dq.as_ref().dual.norm(), 0.0);
    /// ```
    #[inline]
    pub fn from_rotation(rotation: UnitQuaternion<T>) -> Self {
        Self::new_unchecked(DualQuaternion::from_real(rotation.into_inner()))
    }
}

impl<T: SimdRealField> One for UnitDualQuaternion<T>
where
    T::Element: SimdRealField,
{
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

#[cfg(feature = "arbitrary")]
impl<T> Arbitrary for UnitDualQuaternion<T>
where
    T: SimdRealField + Arbitrary + Send,
    T::Element: SimdRealField,
{
    #[inline]
    fn arbitrary(rng: &mut Gen) -> Self {
        Self::new_normalize(Arbitrary::arbitrary(rng))
    }
}