abi_stable/proc_macro_reexports/
stable_abi_derive.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/**

The StableAbi derive macro allows one to implement the [`StableAbi trait`] to :

- Assert that the type has a stable representation across Rust version/compiles.

- Produce the layout of the type at runtime to check it against the loaded library.

# Caveats 

Due to how this macro is implemented, using `Self` in bounds doesn't work,
you must use the full type name and generic arguments.

# Container Attributes

These helper attributes are applied on the type declaration.

###  `#[sabi(phantom_field(name: type))]` 

Adds a virtual field to the type layout constant,
which is checked against the phantom field that was declared in the same order 
for compatibility.

###  `#[sabi(phantom_type_param = type)]` 

Adds a virtual type parameter to the type layout constant,
which is checked for compatibility.

###  `#[sabi(phantom_const_param = constant expression)]` 

Adds a virtual const parameter to the type layout constant,
which is checked for equality with the virtual const parameter declared in the same order.

The parameter must implement `StableAbi + Eq + Debug`.

<span id = "not_stableabi_attr"></span>
###  `#[sabi(not_stableabi(TypeParameter))]`  

Replaces the implicit `TypeParameter: `[`StableAbi`](trait@StableAbi) constraint
with a `TypeParameter: `[`GetStaticEquivalent_`] constraint.

###  `#[sabi(unsafe_unconstrained(TypeParameter))]`  

Removes the implicit `TypeParameter: `[`StableAbi`](trait@StableAbi) constraint.

The type parameter will be ignored when determining whether the type 
has already been checked, when loading a dynamic library,

Don't use this if transmuting this type to have different type parameters,
only changing the `#[sabi(unsafe_unconstrained())]` one,
would cause Undefined Behavior.

This is only necessary if you are passing `TypeParameter` to [`UnsafeIgnoredType`]

###  `#[sabi(bound(Type: ATrait))]` 

Adds a bound to the [`StableAbi`](trait@StableAbi) impl.

###  `#[sabi(bounds(Type: ATrait, Type2: OtherTrait))]` 

Adds many bounds to the [`StableAbi`](trait@StableAbi) impl.

<span id = "prefix_bound_attr"></span>
###  `#[sabi(prefix_bound(Type: ATrait))]` 

This is only valid for Prefix types, declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

Adds a bound to the [`PrefixTypeTrait`] impl (for the deriving type).

###  `#[sabi(prefix_bounds(Type: ATrait, Type2: OtherTrait))]` 

This is only valid for Prefix types, declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

Adds many bounds to the [`PrefixTypeTrait`] impl (for the deriving type).

### `#[sabi(unsafe_allow_type_macros)]`

This allows type macros to be used alongside the StableAbi derive macro.

The reason this is unsafe to enable them is because StableAbi cannot currently 
analize the lifetimes within macros,
which means that if any lifetime argument inside the macro invocation changes
it won't be checked by the runtime type checker.

A type macro is any macro that evaluates to a type.

###  `#[sabi(tag = some_expr)]` 

Adds a [`Tag`](crate::type_layout::Tag) associated with the type,
a dynamically typed data structure used to encode extra properties about a type.

This can only be done once,
to add multiple properties you must to use any of a map, an array, or a set.

You can only rely on tags for safety if 
the specific tags were present since the first compatible version of the library,
otherwise this only guarantees compatibility between parent and child libraries,
not sibling libraries.

Parent means the library/binary that loaded a library,
or the parents of that one.

Sibling means libraries loaded at runtime by the same library/binary 
(or a parent of that one).

For more information about tags, [look here](./type_layout/tagging/index.html)

<span id = "sabi_extra_checks_attr"></span>
###  `#[sabi(extra_checks = <some_constant_expression>)]` 

Adds an `ExtraChecks` trait object associated with the type,
which allows encoding and checking extra properties about a type.

`<some_constant_expression>` must be a constant that implements ExtraChecks .

For examples of using this attribute
[look here](./abi_stability/extra_checks/index.html#examples)

###  `#[sabi(debug_print)]` 

Prints the generated code, stopping compilation.

<span id = "sabi_kind_prefix_attr"></span>
###  `#[sabi(kind(Prefix( .. )))]` 
Declares the struct as being a prefix-type.

Arguments (what goes inside `#[sabi(kind(Prefix(   <here>   )))]`):

- `prefix_ref = <Identifier>)` (optional: defaults to `<DerivingType>_Ref`):
Declares an ffi-safe pointer to a vtable/module,
that can be extended in semver compatible versions.<br>
Uses `<Identifier>` as the name of the prefix struct.<br>
For more details on prefix-types [look here](./docs/prefix_types/index.html)

- `prefix_fields = <Identifier>)` (optional: defaults to `<DerivingType>_Prefix`):<br>
Declares a struct with all the fields in the deriving type up to (and including)
the field with the [`#[sabi(last_prefix_field)]`](#sabilast_prefix_field) attribute,
named `<Identifier>`.

- `prefix_ref_docs = <expression>` (optional, allows multiple):<br>
Replaces the default documentation for `<DerivingType>_Ref` with the passed-in expresion.<br>
If this is passed multiple times, then multiple `#[doc = ...]` attributes are emitted.

<span id = "kind_with_non_exhaustive_attr"></span>
###  `#[sabi(kind(WithNonExhaustive( .. ))]` 

Declares this enum as being nonexhaustive,
generating items and impls necessary to wrap this enum in the [`NonExhaustive`] type
to pass it through ffi.
For more details on nonexhaustive enums [look here](./docs/sabi_nonexhaustive/index.html)

###  `#[sabi(module_reflection(...))]`  

Determines how this type is accessed when treated as a module for reflection.

`#[sabi(module_reflection( Module ))]`<br>
The default reflection mode, treats its the public fields as module items.

`#[sabi(module_reflection( Opaque ))]`<br>
Treats this as an empty module.

`#[sabi(module_reflection( Deref ))]`<br>
Delegates the treatment of this type as a module to the type it dereferences to.

###  `#[sabi(impl_InterfaceType(...))]`  

Implements the [`InterfaceType`] trait for a type,
defining the usable/required traits when creating a 
[`DynTrait`]`<_, ThisType>`/[`NonExhaustive`]`<_, _, ThisType>`.

Syntax: `#[sabi(impl_InterfaceType(Trait0, Trait1, ..., TraitN))]`

If a trait is not specified,
it will not be required when constructing [`DynTrait`]/[`NonExhaustive`],
and won't be usable afterwards.

<span id = "InterfaceType_traits"> These are the traits you can specify: </span>

- `Send`: Changing this to require/unrequire in minor versions is an abi breaking change.

- `Sync`: Changing this to require/unrequire in minor versions is an abi breaking change.

- `Unpin`: Changing this to require/unrequire in minor versions is an abi breaking change.

- `Clone`

- `Default`

- `Display`

- `Debug`

- `Eq`

- `PartialEq`

- `Ord`

- `PartialOrd`

- `Hash`

- `Deserialize`: corresponds to `serde::Deserialize`

- `Serialize`: corresponds to `serde::Serialize`

- `Iterator`:
    this type will also have to implement [`abi_stable::erased_types::IteratorItem`].

- `DoubleEndedIterator`:
    this type will also have to implement [`abi_stable::erased_types::IteratorItem`].

- `FmtWrite`: corresponds to `std::fmt::Write` .

- `IoWrite`: corresponds to `std::io::Write` .

- `IoSeek`: corresponds to `std::io::Seek` .

- `IoRead`: corresponds to `std::io::Read` .

- `IoBufRead`: corresponds to `std::io::BufRead` .

- `Error`: corresponds to `std::error::Error` .

<br>
Examples:

- `#[sabi(impl_InterfaceType(Send, Sync))]`

- `#[sabi(impl_InterfaceType(Send, Sync, Iterator, DoubleEndedIterator))]`

- `#[sabi(impl_InterfaceType(Clone, Debug, FmtWrite))]`

- `#[sabi(impl_InterfaceType(Clone, Debug, IoWrite, IoRead))]`

###  `#[sabi(unsafe_opaque_fields]`

Does not require any field to implement [`StableAbi`](trait@StableAbi),
and instead uses the [`StableAbi`](trait@StableAbi) impl of [`UnsafeOpaqueField`]`<FieldType>`.

This is unsafe because the layout of their type won't be verified when loading the library,
which causes Undefined Behavior if the type has a different layout.


###  `#[sabi(unsafe_sabi_opaque_fields)]`

Requires every field to implement [`StableAbi`](trait@StableAbi)(unless overridden),
but doesn't check their layout.

This is unsafe because the layout of their type won't be verified when loading the library,
which causes Undefined Behavior if the type has a different layout.

# Field attributes

These helper attributes are applied to fields.


###  `#[sabi(rename = ident)]` 

Renames the field in the generated layout information.
Use this when renaming private fields.

###  `#[sabi(unsafe_change_type = SomeType)]` 

Changes the type of this field in the generated type layout constant to SomeType.

This has the `unsafe` prefix because SomeType is relied on being correct by
[`StableAbi`](trait@StableAbi).

###  `#[sabi(unsafe_opaque_field)]` 

Does not require the field to implement [`StableAbi`],
and instead uses the StableAbi impl of [`UnsafeOpaqueField`]`<FieldType>`.

This is unsafe because the layout of the type won't be verified when loading the library,
which causes Undefined Behavior if the type has a different layout.

###  `#[sabi(unsafe_sabi_opaque_field)]`

Requires the field to implement [`StableAbi`] (unless overridden),
but doesn't check its layout.

This is unsafe because the layout of the type won't be verified when loading the library,
which causes Undefined Behavior if the type has a different layout.

###  `#[sabi(bound = SomeBound)]` 

Adds a `TheFieldType: SomeBound` constraint to the [`StableAbi`](trait@StableAbi) impl.

Eg: 
```ignore
#[sabi(bound = Debug)]
name: RStr<'static>,
```
adds the `RStr<'static>: Debug` bound to the [`StableAbi`](trait@StableAbi) impl

###  `#[sabi(with_field_indices)]` 

This is only valid for Prefix types, declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

Generates associated constants named `field_index_for_<field_name>` with 
the index of each field in the prefix type.
Those indices can then be passed to the `abi_stable::prefix_types::panic_on_missing_*` 
functions to panic on a missing field.

###  `#[sabi(accessor_bound = ATrait)]` 

This is only valid for Prefix types, declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

Adds the bound to the field type in the accessor method.

###  `#[sabi(last_prefix_field)]` 

This is only valid for Prefix types, declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

Declares that the field it is applied to is the last field in the prefix,
where every field up to it is guaranteed to exist.

###  `#[sabi(accessible_if = expression)]` 

This is only valid for Prefix types, declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

This attribute turns any field conditional based on the const boolean expression 
(which must be valid a bool constant).

Whether this attribute is aplied to any given prefix field must not change in minor versions.

If `expression` is false, the field won't be accessible,
and the type of the field can be anything so long as its size and alignment is compatible.

If `expression` is true, the type of the field must be compatible when checking layout.

If this attribute is apllied to prefix fields,
it will only be compatible with other types if they agree on 
which accessors are conditional for prefix fields.

Prefix fields with this attribute are made private in the generated
`<DerivingType>_Prefix` struct, without this attribute they keep the visibility.

To do `#[sabi(accessible_if = <TypeParameter as Trait>::CONSTANT)]` you can use the 
[`#[sabi(prefix_bound(TypeParameter: Trait))]`](#prefix_bound_attr) helper attribute.

###  `#[sabi(refl(pub_getter = function_name))]` 

Determines the public getter for a field used by reflection.

The function can return either a reference or a value.

# Field and/or Container attributes

###  `#[sabi(missing_field( .. ))]` 

This is only valid for Prefix types,
declared with [`#[sabi(kind(Prefix(..)))]`](#sabi_kind_prefix_attr).

Determines what happens in the accessor method for a field, when the field is missing.
The default is that it returns an `Option<FieldType>`,
returning None if the field is absent, Some(field_value) if it's present.

If the attribute is on the struct, it's applied to all fields(this is overridable)
after the [`#[sabi(last_prefix_field)]`](#sabilast_prefix_field) attribute.

If the attribute is on a field, it's applied to that field only,
overriding the setting on the struct.

`#[sabi(missing_field(panic))]`<br>
Panics if the field doesn't exist, with an informative error message.

`#[sabi(missing_field(option))]`<br>
Returns None if the field doesn't exist, Some(fieldvalue) if it does.
This is the default.

`#[sabi(missing_field(with = somefunction))]`<br>
Returns `somefunction()` if the field doesn't exist.

`#[sabi(missing_field(value = some_expression))]`<br>
Returns `some_expression` if the field doesn't exist.

`#[sabi(missing_field(default))]`<br>
Returns `Default::default()` if the field doesn't exist.

# Variant and/or Container attributes

###  `#[sabi(with_constructor)]` 

This is only valid for nonexhaustive enums, 
declared with [`#[sabi(kind(WithNonExhaustive(..)))]`](#kind_with_non_exhaustive_attr).

Creates constructors for enum variant(s), named the same as the variant(s) with an `_NE` suffix.

This attribute can be overriden on variants(when it was also applied to the Container itself).

For a variant like this:
`VariantNamed{foo: RString, bar: RBox<Struct>}`
it would generate an associated function like this(the exact generated code might differ a bit):
```ignore
fn VariantNamed_NE(foo: RString, bar: RBox<Struct>) -> Enum_NE {
    let x = Enum::VariantNamed { foo, bar };
    NonExhaustive::new(x)
}
```

###  `#[sabi(with_boxed_constructor)]` 

This is only valid for nonexhaustive enums, 
declared with [`#[sabi(kind(WithNonExhaustive(..)))]`](#kind_with_non_exhaustive_attr).

Creates constructors for enum variant(s) which only contain a pointer,
named the same as the variant(s) with an `_NE` suffix.

This attribute can be overriden on variants(when it was also applied to the Container itself).

All constructor functions are declared inside a single impl block with 
`Self` bounded by the traits that are necessary to construct [`NonExhaustive`] from it.

For a variant like this:

`VariantNamed(RBox<T>)`

it would generate an associated function like this(the exact generated code might differ a bit):
```ignore
fn VariantNamed_NE(value: T) -> Enum_NE<T> {
    let x = RBox::new(value);
    let x = Enum::VariantNamed(x);
    NonExhaustive::new(x)
}
```

<br>

For a variant like this:

`VariantNamed{ptr_: MyPointer<T>}`

it would generate an associated function like this(the exact generated code might differ a bit):
```ignore
fn VariantNamed_NE(value: T) -> Enum_NE<T> {
    let x = MyPointer::new(value);
    let x = Enum::VariantNamed { ptr_: x };
    NonExhaustive::new(x)
}
```

For a variant like this:

`VariantNamed(BoxedStruct)`

it would generate an associated function like this(the exact generated code might differ a bit):
```ignore
fn VariantNamed_NE(
    value: <BoxedStruct as ::std::ops::Deref>::Target,
) -> Enum_NE<T> {
    let x = BoxedStruct::new(value);
    let x = Enum::VariantNamed(x);
    NonExhaustive::new(x)
}
```



# Supported repr attributes

Because repr attributes can cause the type to change layout,
the StableAbi derive macro has to know about every repr attribute applied to the type,
since it might invalidate layout stability.

###  `repr(C)` 

This is the representation that most StableAbi types will have.

###  `repr(transparent)` 

`repr(transparent)` types are supported,
though their layout is not considered equivalent to their only non-zero-sized field,
since this library considers all types as being meaningful even if zero-sized.

###  `repr(i8|u8|i16|u16|i32|u32|i64|u64|isize|usize)` 

These repr attributes are only supported for enums.

###  `repr(align(...))` 


`repr(align(...))` is supported,
so long as it is used in combination with the other supported repr attributes.


# Examples 

###  Basic example 

```

use abi_stable::StableAbi;

#[repr(C)]
#[derive(StableAbi)]
struct Point2D {
    x: u32,
    y: u32,
}

```

###  On a `#[repr(transparent)]` newtype 

```

use abi_stable::StableAbi;

#[repr(transparent)]
#[derive(StableAbi)]
pub struct Wrapper<T> {
    pub inner: T,
}


```

###  On a `#[repr(u8)]` enum.

This enum cannot add variants in minor versions,
for that you have to use [nonexhaustive enums](./docs/sabi_nonexhaustive/index.html).

```
use abi_stable::{std_types::RString, StableAbi};

#[repr(u8)]
#[derive(StableAbi)]
pub enum Command {
    LaunchRockets,
    EatLaundry,
    WakeTheDragon { using: RString },
}

```

###  Prefix-types 

For examples of Prefix-types [look here](./docs/prefix_types/index.html#examples).

###  Nonexhaustive-enums 

For examples of nonexhaustive enums 
[look here for the first example
](./docs/sabi_nonexhaustive/index.html#defining-a-deserializable-nonexhaustive-enum).

### Examples of `#[sabi(not_stableabi())]`

For examples of using both [`#[derive(GetStaticEquivalent)]`][derive@GetStaticEquivalent] and
[`#[sabi(not_stableabi())]`](#not_stableabi_attr)
[look here](derive@GetStaticEquivalent#examples).





[`NonExhaustive`]: ./nonexhaustive_enum/struct.NonExhaustive.html
[`GetStaticEquivalent_`]: crate::abi_stability::get_static_equivalent::GetStaticEquivalent_
[`StableAbi trait`]: trait@StableAbi
[`UnsafeOpaqueField`]: crate::abi_stability::stable_abi_trait::UnsafeOpaqueField
[`UnsafeIgnoredType`]: crate::marker_type::UnsafeIgnoredType
[`PrefixTypeTrait`]: crate::prefix_type::PrefixTypeTrait
[`ExtraChecks`]: crate::abi_stability::extra_checks::ExtraChecks
[`InterfaceType`]: crate::InterfaceType

*/
#[doc(inline)]
pub use abi_stable_derive::StableAbi;