symphonia_core/
audio.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

//! The `audio` module provides primitives for working with multi-channel audio buffers of varying
//! sample formats.

use std::borrow::Cow;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::vec::Vec;

use arrayvec::ArrayVec;
use bitflags::bitflags;

use crate::conv::{ConvertibleSample, FromSample, IntoSample};
use crate::errors::Result;
use crate::sample::{i24, u24, Sample};
use crate::units::Duration;

/// The maximum number of audio plane slices `AudioPlanes` or `AudioPlanesMut` will store on the
/// stack before storing the slices on the heap.
const AUDIO_PLANES_STORAGE_STACK_LIMIT: usize = 8;

bitflags! {
    /// A bitmask representing the audio channels in an audio buffer or signal.
    ///
    /// The first 18 defined channels are guaranteed to be identical to those specified by
    /// Microsoft's WAVEFORMATEXTENSIBLE structure. Channels after 18 are defined by Symphonia and
    /// no order is guaranteed.
    #[derive(Default)]
    pub struct Channels: u32 {
        /// Front-left (left) or the Mono channel.
        const FRONT_LEFT         = 0x0000_0001;
        /// Front-right (right) channel.
        const FRONT_RIGHT        = 0x0000_0002;
        /// Front-centre (centre) channel.
        const FRONT_CENTRE       = 0x0000_0004;
        /// Low frequency channel 1.
        const LFE1               = 0x0000_0008;
        /// Rear-left (surround rear left) channel.
        const REAR_LEFT          = 0x0000_0010;
        /// Rear-right (surround rear right) channel.
        const REAR_RIGHT         = 0x0000_0020;
        /// Front left-of-centre (left center) channel.
        const FRONT_LEFT_CENTRE  = 0x0000_0040;
        /// Front right-of-centre (right center) channel.
        const FRONT_RIGHT_CENTRE = 0x0000_0080;
        /// Rear-centre (surround rear centre) channel.
        const REAR_CENTRE        = 0x0000_0100;
        /// Side left (surround left) channel.
        const SIDE_LEFT          = 0x0000_0200;
        /// Side right (surround right) channel.
        const SIDE_RIGHT         = 0x0000_0400;
        /// Top centre channel.
        const TOP_CENTRE         = 0x0000_0800;
        /// Top front-left channel.
        const TOP_FRONT_LEFT     = 0x0000_1000;
        /// Top centre channel.
        const TOP_FRONT_CENTRE   = 0x0000_2000;
        /// Top front-right channel.
        const TOP_FRONT_RIGHT    = 0x0000_4000;
        /// Top rear-left channel.
        const TOP_REAR_LEFT      = 0x0000_8000;
        /// Top rear-centre channel.
        const TOP_REAR_CENTRE    = 0x0001_0000;
        /// Top rear-right channel.
        const TOP_REAR_RIGHT     = 0x0002_0000;
        /// Rear left-of-centre channel.
        const REAR_LEFT_CENTRE   = 0x0004_0000;
        /// Rear right-of-centre channel.
        const REAR_RIGHT_CENTRE  = 0x0008_0000;
        /// Front left-wide channel.
        const FRONT_LEFT_WIDE    = 0x0010_0000;
        /// Front right-wide channel.
        const FRONT_RIGHT_WIDE   = 0x0020_0000;
        /// Front left-high channel.
        const FRONT_LEFT_HIGH    = 0x0040_0000;
        /// Front centre-high channel.
        const FRONT_CENTRE_HIGH  = 0x0080_0000;
        /// Front right-high channel.
        const FRONT_RIGHT_HIGH   = 0x0100_0000;
        /// Low frequency channel 2.
        const LFE2               = 0x0200_0000;
    }
}

/// An iterator over individual channels within a `Channels` bitmask.
pub struct ChannelsIter {
    channels: Channels,
}

impl Iterator for ChannelsIter {
    type Item = Channels;

    fn next(&mut self) -> Option<Self::Item> {
        if !self.channels.is_empty() {
            let channel = Channels::from_bits_truncate(1 << self.channels.bits.trailing_zeros());
            self.channels ^= channel;
            Some(channel)
        }
        else {
            None
        }
    }
}

impl Channels {
    /// Gets the number of channels.
    pub fn count(self) -> usize {
        self.bits.count_ones() as usize
    }

    /// Gets an iterator over individual channels.
    pub fn iter(&self) -> ChannelsIter {
        ChannelsIter { channels: *self }
    }
}

impl fmt::Display for Channels {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:#032b}", self.bits)
    }
}

/// `Layout` describes common audio channel configurations.
#[derive(Copy, Clone, Debug)]
pub enum Layout {
    /// Single centre channel.
    Mono,
    /// Left and Right channels.
    Stereo,
    /// Left and Right channels with a single low-frequency channel.
    TwoPointOne,
    /// Front Left and Right, Rear Left and Right, and a single low-frequency channel.
    FivePointOne,
}

impl Layout {
    /// Converts a channel `Layout` into a `Channels` bit mask.
    pub fn into_channels(self) -> Channels {
        match self {
            Layout::Mono => Channels::FRONT_LEFT,
            Layout::Stereo => Channels::FRONT_LEFT | Channels::FRONT_RIGHT,
            Layout::TwoPointOne => Channels::FRONT_LEFT | Channels::FRONT_RIGHT | Channels::LFE1,
            Layout::FivePointOne => {
                Channels::FRONT_LEFT
                    | Channels::FRONT_RIGHT
                    | Channels::FRONT_CENTRE
                    | Channels::REAR_LEFT
                    | Channels::REAR_RIGHT
                    | Channels::LFE1
            }
        }
    }
}

/// `SignalSpec` describes the characteristics of a Signal.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SignalSpec {
    /// The signal sampling rate in hertz (Hz).
    pub rate: u32,

    /// The channel assignments of the signal. The order of the channels in the vector is the order
    /// in which each channel sample is stored in a frame.
    pub channels: Channels,
}

impl SignalSpec {
    pub fn new(rate: u32, channels: Channels) -> Self {
        SignalSpec { rate, channels }
    }

    pub fn new_with_layout(rate: u32, layout: Layout) -> Self {
        SignalSpec { rate, channels: layout.into_channels() }
    }
}

/// Small-storage optimization capable storage of immutable slices of `AudioBuffer` audio planes.
enum AudioPlaneStorage<'a, S, const N: usize> {
    Stack(ArrayVec<&'a [S], N>),
    Heap(Vec<&'a [S]>),
}

/// `AudioPlanes` provides immutable slices to each audio channel (plane) contained in a signal.
pub struct AudioPlanes<'a, S: 'a + Sample> {
    planes: AudioPlaneStorage<'a, S, AUDIO_PLANES_STORAGE_STACK_LIMIT>,
}

impl<'a, S: Sample> AudioPlanes<'a, S> {
    /// Instantiate `AudioPlanes` for the given channel configuration.
    fn new(channels: Channels) -> Self {
        let n_planes = channels.count();

        if n_planes <= AUDIO_PLANES_STORAGE_STACK_LIMIT {
            AudioPlanes { planes: AudioPlaneStorage::Stack(ArrayVec::new()) }
        }
        else {
            AudioPlanes { planes: AudioPlaneStorage::Heap(Vec::with_capacity(n_planes)) }
        }
    }

    /// Push an immutable reference to an audio plane. This function may panic if the number of
    /// pushed planes exceeds the number specified at instantiation.
    fn push(&mut self, plane: &'a [S]) {
        match &mut self.planes {
            AudioPlaneStorage::Stack(planes) => {
                debug_assert!(!planes.is_full());
                planes.push(plane);
            }
            AudioPlaneStorage::Heap(planes) => {
                planes.push(plane);
            }
        }
    }

    /// Gets immutable slices of all the audio planes.
    pub fn planes(&self) -> &[&'a [S]] {
        match &self.planes {
            AudioPlaneStorage::Stack(planes) => planes,
            AudioPlaneStorage::Heap(planes) => planes,
        }
    }
}

/// Small-storage optimization capable storage of mutable slices of `AudioBuffer` audio planes.
enum AudioPlaneStorageMut<'a, S, const N: usize> {
    Stack(ArrayVec<&'a mut [S], N>),
    Heap(Vec<&'a mut [S]>),
}

/// `AudioPlanesMut` provides mutable slices to each audio channel (plane) contained in a signal.
pub struct AudioPlanesMut<'a, S: 'a + Sample> {
    planes: AudioPlaneStorageMut<'a, S, AUDIO_PLANES_STORAGE_STACK_LIMIT>,
}

impl<'a, S: Sample> AudioPlanesMut<'a, S> {
    /// Instantiate `AudioPlanesMut` for the given channel configuration.
    fn new(channels: Channels) -> Self {
        let n_planes = channels.count();

        if n_planes <= AUDIO_PLANES_STORAGE_STACK_LIMIT {
            AudioPlanesMut { planes: AudioPlaneStorageMut::Stack(ArrayVec::new()) }
        }
        else {
            AudioPlanesMut { planes: AudioPlaneStorageMut::Heap(Vec::with_capacity(n_planes)) }
        }
    }

    /// Push a mutable reference to an audio plane. This function may panic if the number of
    /// pushed planes exceeds the number specified at instantiation.
    fn push(&mut self, plane: &'a mut [S]) {
        match &mut self.planes {
            AudioPlaneStorageMut::Stack(planes) => {
                debug_assert!(!planes.is_full());
                planes.push(plane);
            }
            AudioPlaneStorageMut::Heap(storage) => {
                storage.push(plane);
            }
        }
    }

    /// Gets mutable slices of all the audio planes.
    pub fn planes(&mut self) -> &mut [&'a mut [S]] {
        match &mut self.planes {
            AudioPlaneStorageMut::Stack(planes) => planes,
            AudioPlaneStorageMut::Heap(planes) => planes,
        }
    }
}

/// `AudioBuffer` is a container for multi-channel planar audio sample data. An `AudioBuffer` is
/// characterized by the duration (capacity), and audio specification (channels and sample rate).
/// The capacity of an `AudioBuffer` is the maximum number of samples the buffer may store per
/// channel. Manipulation of samples is accomplished through the Signal trait or direct buffer
/// manipulation.
#[derive(Clone)]
pub struct AudioBuffer<S: Sample> {
    buf: Vec<S>,
    spec: SignalSpec,
    n_frames: usize,
    n_capacity: usize,
}

impl<S: Sample> AudioBuffer<S> {
    /// Instantiate a new `AudioBuffer` using the specified signal specification and of the given
    /// duration.
    pub fn new(duration: Duration, spec: SignalSpec) -> Self {
        // The number of channels * duration cannot exceed u64::MAX.
        assert!(duration <= u64::MAX / spec.channels.count() as u64, "duration too large");

        // The total number of samples the buffer will store.
        let n_samples = duration * spec.channels.count() as u64;

        // Practically speaking, it is not possible to allocate more than usize::MAX bytes of
        // samples. This assertion ensures the potential downcast of n_samples to usize below is
        // safe.
        assert!(n_samples <= (usize::MAX / mem::size_of::<S>()) as u64, "duration too large");

        // Allocate sample buffer and default initialize all samples to silence.
        let buf = vec![S::MID; n_samples as usize];

        AudioBuffer { buf, spec, n_frames: 0, n_capacity: duration as usize }
    }

    /// Instantiates an unused `AudioBuffer`. An unused `AudioBuffer` will not allocate any memory,
    /// has a sample rate of 0, and no audio channels.
    pub fn unused() -> Self {
        AudioBuffer {
            buf: Vec::with_capacity(0),
            spec: SignalSpec::new(0, Channels::empty()),
            n_frames: 0,
            n_capacity: 0,
        }
    }

    /// Returns `true` if the `AudioBuffer` is unused.
    pub fn is_unused(&self) -> bool {
        self.n_capacity == 0
    }

    /// Gets the signal specification for the buffer.
    pub fn spec(&self) -> &SignalSpec {
        &self.spec
    }

    /// Gets the total capacity of the buffer. The capacity is the maximum number of audio frames
    /// a buffer can store.
    pub fn capacity(&self) -> usize {
        self.n_capacity
    }

    /// Gets immutable references to all audio planes (channels) within the audio buffer.
    ///
    /// Note: This is not a cheap operation for audio buffers with > 8 channels. It is advisable
    /// that this call is only used when operating on large batches of frames. Generally speaking,
    /// it is almost always better to use `chan()` to selectively choose the plane to read instead.
    pub fn planes(&self) -> AudioPlanes<S> {
        // Fill the audio planes structure with references to the written portion of each audio
        // plane.
        let mut planes = AudioPlanes::new(self.spec.channels);

        for channel in self.buf.chunks_exact(self.n_capacity) {
            planes.push(&channel[..self.n_frames]);
        }

        planes
    }

    /// Gets mutable references to all audio planes (channels) within the buffer.
    ///
    /// Note: This is not a cheap operation for audio buffers with > 8 channels. It is advisable
    /// that this call is only used when modifying large batches of frames. Generally speaking,
    /// it is almost always better to use `render()`, `fill()`, `chan_mut()`, and `chan_pair_mut()`
    /// to modify the buffer instead.
    pub fn planes_mut(&mut self) -> AudioPlanesMut<S> {
        // Fill the audio planes structure with references to the written portion of each audio
        // plane.
        let mut planes = AudioPlanesMut::new(self.spec.channels);

        for channel in self.buf.chunks_exact_mut(self.n_capacity) {
            planes.push(&mut channel[..self.n_frames]);
        }

        planes
    }

    /// Converts the contents of an AudioBuffer into an equivalent destination AudioBuffer of a
    /// different type. If the types are the same then this is a copy operation.
    pub fn convert<T: Sample>(&self, dest: &mut AudioBuffer<T>)
    where
        S: IntoSample<T>,
    {
        assert!(dest.n_capacity >= self.n_capacity);
        assert!(dest.spec == self.spec);

        for c in 0..self.spec.channels.count() {
            let begin = c * self.n_capacity;
            let end = begin + self.n_frames;

            for (d, s) in dest.buf[begin..end].iter_mut().zip(&self.buf[begin..end]) {
                *d = (*s).into_sample();
            }
        }

        dest.n_frames = self.n_frames;
    }

    /// Makes an equivalent AudioBuffer of a different type.
    pub fn make_equivalent<E: Sample>(&self) -> AudioBuffer<E> {
        AudioBuffer::<E>::new(self.n_capacity as Duration, self.spec)
    }
}

macro_rules! impl_audio_buffer_ref_func {
    ($var:expr, $buf:ident,$expr:expr) => {
        match $var {
            AudioBufferRef::U8($buf) => $expr,
            AudioBufferRef::U16($buf) => $expr,
            AudioBufferRef::U24($buf) => $expr,
            AudioBufferRef::U32($buf) => $expr,
            AudioBufferRef::S8($buf) => $expr,
            AudioBufferRef::S16($buf) => $expr,
            AudioBufferRef::S24($buf) => $expr,
            AudioBufferRef::S32($buf) => $expr,
            AudioBufferRef::F32($buf) => $expr,
            AudioBufferRef::F64($buf) => $expr,
        }
    };
}

/// `AudioBufferRef` is a copy-on-write reference to an `AudioBuffer` of any type.
#[derive(Clone)]
pub enum AudioBufferRef<'a> {
    U8(Cow<'a, AudioBuffer<u8>>),
    U16(Cow<'a, AudioBuffer<u16>>),
    U24(Cow<'a, AudioBuffer<u24>>),
    U32(Cow<'a, AudioBuffer<u32>>),
    S8(Cow<'a, AudioBuffer<i8>>),
    S16(Cow<'a, AudioBuffer<i16>>),
    S24(Cow<'a, AudioBuffer<i24>>),
    S32(Cow<'a, AudioBuffer<i32>>),
    F32(Cow<'a, AudioBuffer<f32>>),
    F64(Cow<'a, AudioBuffer<f64>>),
}

impl<'a> AudioBufferRef<'a> {
    /// Gets the signal specification for the buffer.
    pub fn spec(&self) -> &SignalSpec {
        impl_audio_buffer_ref_func!(self, buf, buf.spec())
    }

    /// Gets the total capacity of the buffer. The capacity is the maximum number of audio frames
    /// a buffer can store.
    pub fn capacity(&self) -> usize {
        impl_audio_buffer_ref_func!(self, buf, buf.capacity())
    }

    /// Gets the number of frames in the buffer.
    pub fn frames(&self) -> usize {
        impl_audio_buffer_ref_func!(self, buf, buf.frames())
    }

    pub fn convert<T>(&self, dest: &mut AudioBuffer<T>)
    where
        T: Sample
            + FromSample<u8>
            + FromSample<u16>
            + FromSample<u24>
            + FromSample<u32>
            + FromSample<i8>
            + FromSample<i16>
            + FromSample<i24>
            + FromSample<i32>
            + FromSample<f32>
            + FromSample<f64>,
    {
        impl_audio_buffer_ref_func!(self, buf, buf.convert(dest))
    }

    pub fn make_equivalent<E: Sample>(&self) -> AudioBuffer<E> {
        impl_audio_buffer_ref_func!(self, buf, buf.make_equivalent::<E>())
    }
}

/// `AsAudioBufferRef` is a trait implemented for `AudioBuffer`s that may be referenced in an
/// `AudioBufferRef`.
pub trait AsAudioBufferRef {
    /// Get an `AudioBufferRef` reference.
    fn as_audio_buffer_ref(&self) -> AudioBufferRef;
}

macro_rules! impl_as_audio_buffer_ref {
    ($fmt:ty, $ref:path) => {
        impl AsAudioBufferRef for AudioBuffer<$fmt> {
            fn as_audio_buffer_ref(&self) -> AudioBufferRef {
                $ref(Cow::Borrowed(self))
            }
        }
    };
}

impl_as_audio_buffer_ref!(u8, AudioBufferRef::U8);
impl_as_audio_buffer_ref!(u16, AudioBufferRef::U16);
impl_as_audio_buffer_ref!(u24, AudioBufferRef::U24);
impl_as_audio_buffer_ref!(u32, AudioBufferRef::U32);
impl_as_audio_buffer_ref!(i8, AudioBufferRef::S8);
impl_as_audio_buffer_ref!(i16, AudioBufferRef::S16);
impl_as_audio_buffer_ref!(i24, AudioBufferRef::S24);
impl_as_audio_buffer_ref!(i32, AudioBufferRef::S32);
impl_as_audio_buffer_ref!(f32, AudioBufferRef::F32);
impl_as_audio_buffer_ref!(f64, AudioBufferRef::F64);

/// The `Signal` trait provides methods for rendering and transforming contiguous buffers of audio
/// data.
pub trait Signal<S: Sample> {
    /// Gets the number of actual frames written to the buffer. Conversely, this also is the number
    /// of written samples in any one channel.
    fn frames(&self) -> usize;

    /// Clears all written frames from the buffer. This is a cheap operation and does not zero the
    /// underlying audio data.
    fn clear(&mut self);

    /// Gets an immutable reference to all the written samples in the specified channel.
    fn chan(&self, channel: usize) -> &[S];

    /// Gets a mutable reference to all the written samples in the specified channel.
    fn chan_mut(&mut self, channel: usize) -> &mut [S];

    /// Gets two mutable references to two different channels.
    fn chan_pair_mut(&mut self, first: usize, second: usize) -> (&mut [S], &mut [S]);

    /// Renders a number of silent frames.
    ///
    /// If `n_frames` is `None`, the remaining number of frames will be used.
    fn render_silence(&mut self, n_frames: Option<usize>);

    /// Renders a reserved number of frames. This is a cheap operation and simply advances the frame
    /// counter. The underlying audio data is not modified and should be overwritten through other
    /// means.
    ///
    /// If `n_frames` is `None`, the remaining number of frames will be used. If `n_frames` is too
    /// large, this function will assert.
    fn render_reserved(&mut self, n_frames: Option<usize>);

    /// Renders a number of frames using the provided render function. The number of frames to
    /// render is specified by `n_frames`. If `n_frames` is `None`, the remaining number of frames
    /// in the buffer will be rendered. If the render function returns an error, the render
    /// operation is terminated prematurely.
    fn render<'a, F>(&'a mut self, n_frames: Option<usize>, render: F) -> Result<()>
    where
        F: FnMut(&mut AudioPlanesMut<'a, S>, usize) -> Result<()>;

    /// Clears, and then renders the entire buffer using the fill function. This is a convenience
    /// wrapper around `render` and exhibits the same behaviour as `render` in regards to the fill
    /// function.
    #[inline]
    fn fill<'a, F>(&'a mut self, fill: F) -> Result<()>
    where
        F: FnMut(&mut AudioPlanesMut<'a, S>, usize) -> Result<()>,
    {
        self.clear();
        self.render(None, fill)
    }

    /// Transforms every written sample in the signal using the transformation function provided.
    /// This function does not guarantee an order in which the samples are transformed.
    fn transform<F>(&mut self, f: F)
    where
        F: Fn(S) -> S;

    /// Truncates the buffer to the number of frames specified. If the number of frames in the
    /// buffer is less-than the number of frames specified, then this function does nothing.
    fn truncate(&mut self, n_frames: usize);

    /// Shifts the contents of the buffer back by the number of frames specified. The leading frames
    /// are dropped from the buffer.
    fn shift(&mut self, shift: usize);

    /// Trims samples from the start and end of the buffer.
    fn trim(&mut self, start: usize, end: usize) {
        // First, trim the end to reduce the number of frames have to be shifted when the front is
        // trimmed.
        self.truncate(self.frames().saturating_sub(end));

        // Second, trim the start.
        self.shift(start);
    }
}

impl<S: Sample> Signal<S> for AudioBuffer<S> {
    fn clear(&mut self) {
        self.n_frames = 0;
    }

    fn frames(&self) -> usize {
        self.n_frames
    }

    fn chan(&self, channel: usize) -> &[S] {
        let start = channel * self.n_capacity;

        // If the channel index is invalid the slice will be out-of-bounds.
        assert!(start + self.n_capacity <= self.buf.len(), "invalid channel index");

        &self.buf[start..start + self.n_frames]
    }

    fn chan_mut(&mut self, channel: usize) -> &mut [S] {
        let start = channel * self.n_capacity;

        // If the channel index is invalid the slice will be out-of-bounds.
        assert!(start + self.n_capacity <= self.buf.len(), "invalid channel index");

        &mut self.buf[start..start + self.n_frames]
    }

    fn chan_pair_mut(&mut self, first: usize, second: usize) -> (&mut [S], &mut [S]) {
        // Both channels in the pair must be unique.
        assert!(first != second, "channel indicies cannot be the same");

        let first_idx = self.n_capacity * first;
        let second_idx = self.n_capacity * second;

        // If a channel index is invalid the slice will be out-of-bounds.
        assert!(first_idx + self.n_capacity <= self.buf.len(), "invalid channel index");
        assert!(second_idx + self.n_capacity <= self.buf.len(), "invalid channel index");

        if first_idx < second_idx {
            let (a, b) = self.buf.split_at_mut(second_idx);

            (&mut a[first_idx..first_idx + self.n_frames], &mut b[..self.n_frames])
        }
        else {
            let (a, b) = self.buf.split_at_mut(first_idx);

            (&mut b[..self.n_frames], &mut a[second_idx..second_idx + self.n_frames])
        }
    }

    fn render_silence(&mut self, n_frames: Option<usize>) {
        let n_silent_frames = n_frames.unwrap_or(self.n_capacity - self.n_frames);

        // Do not render past the end of the audio buffer.
        assert!(self.n_frames + n_silent_frames <= self.capacity(), "capacity will be exceeded");

        for channel in self.buf.chunks_exact_mut(self.n_capacity) {
            for sample in &mut channel[self.n_frames..self.n_frames + n_silent_frames] {
                *sample = S::MID;
            }
        }

        self.n_frames += n_silent_frames;
    }

    fn render_reserved(&mut self, n_frames: Option<usize>) {
        let n_reserved_frames = n_frames.unwrap_or(self.n_capacity - self.n_frames);
        // Do not render past the end of the audio buffer.
        assert!(self.n_frames + n_reserved_frames <= self.n_capacity, "capacity will be exceeded");
        self.n_frames += n_reserved_frames;
    }

    fn render<'a, F>(&'a mut self, n_frames: Option<usize>, mut render: F) -> Result<()>
    where
        F: FnMut(&mut AudioPlanesMut<'a, S>, usize) -> Result<()>,
    {
        // The number of frames to be rendered is the amount requested, if specified, or the
        // remainder of the audio buffer.
        let n_render_frames = n_frames.unwrap_or(self.n_capacity - self.n_frames);

        // Do not render past the end of the audio buffer.
        let end = self.n_frames + n_render_frames;
        assert!(end <= self.n_capacity, "capacity will be exceeded");

        // At this point, n_render_frames can be considered "reserved". Create an audio plane
        // structure and fill each plane entry with a reference to the "reserved" samples in each
        // channel respectively.
        let mut planes = AudioPlanesMut::new(self.spec.channels);

        for channel in self.buf.chunks_exact_mut(self.n_capacity) {
            planes.push(&mut channel[self.n_frames..end]);
        }

        // Attempt to render the into the reserved frames, one-by-one, exiting only if there is an
        // error in the render function.
        while self.n_frames < end {
            render(&mut planes, self.n_frames)?;
            self.n_frames += 1;
        }

        Ok(())
    }

    fn transform<F>(&mut self, f: F)
    where
        F: Fn(S) -> S,
    {
        debug_assert!(self.n_frames <= self.n_capacity);

        // Apply the transformation function over each sample in each plane.
        for plane in self.buf.chunks_mut(self.n_capacity) {
            for sample in &mut plane[0..self.n_frames] {
                *sample = f(*sample);
            }
        }
    }

    fn truncate(&mut self, n_frames: usize) {
        if n_frames < self.n_frames {
            self.n_frames = n_frames;
        }
    }

    fn shift(&mut self, shift: usize) {
        if shift >= self.n_frames {
            self.clear();
        }
        else if shift > 0 {
            // Shift the samples down in each plane.
            for plane in self.buf.chunks_mut(self.n_capacity) {
                plane.copy_within(shift..self.n_frames, 0);
            }
            self.n_frames -= shift;
        }
    }
}

/// A `SampleBuffer`, is a sample oriented buffer. It is agnostic to the ordering/layout of samples
/// within the buffer. `SampleBuffer` is mean't for safely importing and exporting sample data to
/// and from Symphonia using the sample's in-memory data-type.
pub struct SampleBuffer<S: Sample> {
    buf: Box<[S]>,
    n_written: usize,
}

impl<S: Sample> SampleBuffer<S> {
    /// Instantiate a new `SampleBuffer` using the specified signal specification and of the given
    /// duration.
    pub fn new(duration: Duration, spec: SignalSpec) -> SampleBuffer<S> {
        // The number of channels * duration cannot exceed u64::MAX.
        assert!(duration <= u64::MAX / spec.channels.count() as u64, "duration too large");

        // The total number of samples the buffer will store.
        let n_samples = duration * spec.channels.count() as u64;

        // Practically speaking, it is not possible to allocate more than usize::MAX bytes of
        // samples. This assertion ensures the potential downcast of n_samples to usize below is
        // safe.
        assert!(n_samples <= (usize::MAX / mem::size_of::<S>()) as u64, "duration too large");

        // Allocate enough memory for all the samples and fill the buffer with silence.
        let buf = vec![S::MID; n_samples as usize].into_boxed_slice();

        SampleBuffer { buf, n_written: 0 }
    }

    /// Gets the number of written samples.
    pub fn len(&self) -> usize {
        self.n_written
    }

    /// Returns `true` if the buffer contains no written samples.
    pub fn is_empty(&self) -> bool {
        self.n_written == 0
    }

    /// Gets an immutable slice of all written samples.
    pub fn samples(&self) -> &[S] {
        &self.buf[..self.n_written]
    }

    /// Gets a mutable slice of all written samples.
    pub fn samples_mut(&mut self) -> &mut [S] {
        &mut self.buf[..self.n_written]
    }

    /// Gets the maximum number of samples the `SampleBuffer` may store.
    pub fn capacity(&self) -> usize {
        self.buf.len()
    }

    /// Clears all written samples.
    pub fn clear(&mut self) {
        self.n_written = 0;
    }

    /// Copies all audio data from the source `AudioBufferRef` in planar channel order into the
    /// `SampleBuffer`. The two buffers must be equivalent.
    pub fn copy_planar_ref(&mut self, src: AudioBufferRef)
    where
        S: ConvertibleSample,
    {
        match src {
            AudioBufferRef::U8(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::U16(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::U24(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::U32(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S8(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S16(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S24(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S32(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::F32(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::F64(buf) => self.copy_planar_typed(&buf),
        }
    }

    /// Copies all audio data from a source `AudioBuffer` into the `SampleBuffer` in planar
    /// channel order. The two buffers must be equivalent.
    pub fn copy_planar_typed<F>(&mut self, src: &AudioBuffer<F>)
    where
        F: Sample + IntoSample<S>,
    {
        let n_frames = src.frames();
        let n_channels = src.spec.channels.count();
        let n_samples = n_frames * n_channels;

        // Ensure that the capacity of the sample buffer is greater than or equal to the number
        // of samples that will be copied from the source buffer.
        assert!(self.capacity() >= n_samples);

        for ch in 0..n_channels {
            let ch_slice = src.chan(ch);

            for (dst, src) in self.buf[ch * n_frames..].iter_mut().zip(ch_slice) {
                *dst = (*src).into_sample();
            }
        }

        // Commit the written samples.
        self.n_written = n_samples;
    }

    /// Copies all audio data from the source `AudioBufferRef` in interleaved channel order into the
    /// `SampleBuffer`. The two buffers must be equivalent.
    pub fn copy_interleaved_ref(&mut self, src: AudioBufferRef)
    where
        S: ConvertibleSample,
    {
        match src {
            AudioBufferRef::U8(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::U16(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::U24(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::U32(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S8(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S16(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S24(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S32(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::F32(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::F64(buf) => self.copy_interleaved_typed(&buf),
        }
    }

    /// Copies all audio samples from a source `AudioBuffer` into the `SampleBuffer` in interleaved
    /// channel order. The two buffers must be equivalent.
    pub fn copy_interleaved_typed<F>(&mut self, src: &AudioBuffer<F>)
    where
        F: Sample + IntoSample<S>,
    {
        let n_channels = src.spec.channels.count();
        let n_samples = src.frames() * n_channels;

        // Ensure that the capacity of the sample buffer is greater than or equal to the number
        // of samples that will be copied from the source buffer.
        assert!(self.capacity() >= n_samples);

        // Interleave the source buffer channels into the sample buffer.
        for ch in 0..n_channels {
            let ch_slice = src.chan(ch);

            for (dst, src) in self.buf[ch..].iter_mut().step_by(n_channels).zip(ch_slice) {
                *dst = (*src).into_sample();
            }
        }

        // Commit the written samples.
        self.n_written = n_samples;
    }
}

/// This non-public module contains the trait `Sealed` which is used to constrain
/// `RawSample::RawType` with `bytemuck::Pod`. This is a trade-off to hide `bytemuck` from the public
/// interface. The downside is that `RawSample::RawType` is locked to the types we implement
/// `Sealed` on. To compensate, we implement `Sealed` on all primitive numeric data types, and byte
/// arrays up to 8 bytes long.
mod sealed {
    pub trait Sealed: bytemuck::Pod {}
}

impl sealed::Sealed for u8 {}
impl sealed::Sealed for i8 {}
impl sealed::Sealed for u16 {}
impl sealed::Sealed for i16 {}
impl sealed::Sealed for u32 {}
impl sealed::Sealed for i32 {}
impl sealed::Sealed for u64 {}
impl sealed::Sealed for i64 {}
impl sealed::Sealed for f32 {}
impl sealed::Sealed for f64 {}
impl sealed::Sealed for [u8; 1] {}
impl sealed::Sealed for [u8; 2] {}
impl sealed::Sealed for [u8; 3] {}
impl sealed::Sealed for [u8; 4] {}
impl sealed::Sealed for [u8; 5] {}
impl sealed::Sealed for [u8; 6] {}
impl sealed::Sealed for [u8; 7] {}
impl sealed::Sealed for [u8; 8] {}

/// `RawSample` provides a typed interface for converting a `Sample` from it's in-memory data type
/// to actual binary type.
pub trait RawSample: Sample {
    /// The `RawType` is a primitive data type, or fixed-size byte array, that is the final binary
    /// representation of the sample when written out to a byte-buffer.
    type RawType: Copy + Default + sealed::Sealed;

    fn into_raw_sample(self) -> Self::RawType;
}

impl RawSample for u8 {
    type RawType = u8;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for i8 {
    type RawType = i8;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for u16 {
    type RawType = u16;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for i16 {
    type RawType = i16;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for u24 {
    type RawType = [u8; 3];

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self.to_ne_bytes()
    }
}

impl RawSample for i24 {
    type RawType = [u8; 3];

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self.to_ne_bytes()
    }
}

impl RawSample for u32 {
    type RawType = u32;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for i32 {
    type RawType = i32;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for f32 {
    type RawType = f32;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

impl RawSample for f64 {
    type RawType = f64;

    #[inline(always)]
    fn into_raw_sample(self) -> Self::RawType {
        self
    }
}

/// A `RawSampleBuffer`, is a byte-oriented sample buffer. All samples copied to this buffer are
/// converted into their packed data-type and stored as a stream of bytes. `RawSampleBuffer` is
/// mean't for safely importing and exporting sample data to and from Symphonia as raw bytes.
pub struct RawSampleBuffer<S: Sample + RawSample> {
    buf: Box<[S::RawType]>,
    n_written: usize,
    // Might take your heart.
    sample_format: PhantomData<S>,
}

impl<S: Sample + RawSample> RawSampleBuffer<S> {
    /// Instantiate a new `RawSampleBuffer` using the specified signal specification and of the given
    /// duration.
    pub fn new(duration: Duration, spec: SignalSpec) -> RawSampleBuffer<S> {
        // The number of channels * duration cannot exceed u64::MAX.
        assert!(duration <= u64::MAX / spec.channels.count() as u64, "duration too large");

        // The total number of samples the buffer will store.
        let n_samples = duration * spec.channels.count() as u64;

        // Practically speaking, it is not possible to allocate more than usize::MAX bytes of raw
        // samples. This assertion ensures the potential downcast of n_samples to usize below is
        // safe.
        assert!(
            n_samples <= (usize::MAX / mem::size_of::<S::RawType>()) as u64,
            "duration too large"
        );

        // Allocate enough memory for all the samples and fill the buffer with silence.
        let buf = vec![S::MID.into_raw_sample(); n_samples as usize].into_boxed_slice();

        RawSampleBuffer { buf, n_written: 0, sample_format: PhantomData }
    }

    /// Gets the number of written samples.
    pub fn len(&self) -> usize {
        self.n_written
    }

    /// Returns `true` if the buffer contains no written samples.
    pub fn is_empty(&self) -> bool {
        self.n_written == 0
    }

    /// Gets the maximum number of samples the `RawSampleBuffer` may store.
    pub fn capacity(&self) -> usize {
        self.buf.len()
    }

    /// Clears all written samples.
    pub fn clear(&mut self) {
        self.n_written = 0;
    }

    /// Gets an immutable slice to the bytes of the sample's written in the `RawSampleBuffer`.
    pub fn as_bytes(&self) -> &[u8] {
        // Get a slice to the written raw samples in the buffer, and convert from &[RawType] to
        // &[u8]. Since &[u8] has the least strict alignment requirements, this should always be
        // safe and therefore cast_slice should never panic.
        bytemuck::cast_slice(&self.buf[..self.n_written])
    }

    /// Copies all audio data from the source `AudioBufferRef` in planar channel order into the
    /// `RawSampleBuffer`. The two buffers must be equivalent.
    pub fn copy_planar_ref(&mut self, src: AudioBufferRef)
    where
        S: ConvertibleSample,
    {
        match src {
            AudioBufferRef::U8(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::U16(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::U24(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::U32(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S8(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S16(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S24(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::S32(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::F32(buf) => self.copy_planar_typed(&buf),
            AudioBufferRef::F64(buf) => self.copy_planar_typed(&buf),
        }
    }

    /// Copies all audio data from a source `AudioBuffer` that is of a different sample format type
    /// than that of the `RawSampleBuffer` in planar channel order. The two buffers must be
    /// equivalent.
    pub fn copy_planar_typed<F>(&mut self, src: &AudioBuffer<F>)
    where
        F: Sample + IntoSample<S>,
    {
        let n_channels = src.spec.channels.count();
        let n_samples = n_channels * src.n_frames;

        // Ensure that the capacity of the sample buffer is greater than or equal to the number
        // of samples that will be copied from the source buffer.
        assert!(self.capacity() >= n_samples);

        let dst_buf = &mut self.buf[..n_samples];

        for (ch, dst_ch) in dst_buf.chunks_exact_mut(src.n_frames).enumerate() {
            let src_ch = src.chan(ch);

            for (&s, d) in src_ch.iter().zip(dst_ch) {
                *d = s.into_sample().into_raw_sample();
            }
        }

        self.n_written = n_samples;
    }

    /// Copies all audio data from the source `AudioBuffer` to the `RawSampleBuffer` in planar order.
    /// The two buffers must be equivalent.
    pub fn copy_planar(&mut self, src: &AudioBuffer<S>) {
        let n_channels = src.spec.channels.count();
        let n_samples = src.n_frames * n_channels;

        // Ensure that the capacity of the sample buffer is greater than or equal to the number
        // of samples that will be copied from the source buffer.
        assert!(self.capacity() >= n_samples);

        let dst_buf = &mut self.buf[..n_samples];

        for (ch, dst_ch) in dst_buf.chunks_exact_mut(src.n_frames).enumerate() {
            let src_ch = src.chan(ch);

            for (&s, d) in src_ch.iter().zip(dst_ch) {
                *d = s.into_raw_sample();
            }
        }

        self.n_written = n_samples;
    }

    /// Copies all audio data from the source `AudioBufferRef` in interleaved channel order into the
    /// `RawSampleBuffer`. The two buffers must be equivalent.
    pub fn copy_interleaved_ref(&mut self, src: AudioBufferRef)
    where
        S: ConvertibleSample,
    {
        match src {
            AudioBufferRef::U8(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::U16(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::U24(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::U32(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S8(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S16(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S24(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::S32(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::F32(buf) => self.copy_interleaved_typed(&buf),
            AudioBufferRef::F64(buf) => self.copy_interleaved_typed(&buf),
        }
    }

    /// Copies all audio data from a source `AudioBuffer` that is of a different sample format type
    /// than that of the `RawSampleBuffer` in interleaved channel order. The two buffers must be
    /// equivalent.
    pub fn copy_interleaved_typed<F>(&mut self, src: &AudioBuffer<F>)
    where
        F: Sample + IntoSample<S>,
    {
        let n_frames = src.n_frames;
        let n_channels = src.spec.channels.count();
        let n_samples = n_frames * n_channels;

        // Ensure that the capacity of the sample buffer is greater than or equal to the number
        // of samples that will be copied from the source buffer.
        assert!(self.capacity() >= n_samples);

        // The destination buffer slice.
        let dst_buf = &mut self.buf[..n_samples];

        // Provide slightly optimized interleave algorithms for Mono and Stereo buffers.
        match n_channels {
            // No channels, do nothing.
            0 => (),
            // Mono
            1 => {
                for (&s, d) in src.chan(0).iter().zip(dst_buf) {
                    *d = s.into_sample().into_raw_sample();
                }
            }
            // Stereo
            2 => {
                let l_buf = src.chan(0);
                let r_buf = src.chan(1);

                for ((&l, &r), d) in l_buf.iter().zip(r_buf).zip(dst_buf.chunks_exact_mut(2)) {
                    d[0] = l.into_sample().into_raw_sample();
                    d[1] = r.into_sample().into_raw_sample();
                }
            }
            // 3+ channels
            _ => {
                for ch in 0..n_channels {
                    let src_ch = src.chan(ch);
                    let dst_ch_iter = dst_buf[ch..].iter_mut().step_by(n_channels);

                    for (&s, d) in src_ch.iter().zip(dst_ch_iter) {
                        *d = s.into_sample().into_raw_sample();
                    }
                }
            }
        }

        self.n_written = n_samples;
    }

    /// Copies all audio data from the source `AudioBuffer` to the `RawSampleBuffer` in interleaved
    /// channel order. The two buffers must be equivalent.
    pub fn copy_interleaved(&mut self, src: &AudioBuffer<S>) {
        let n_frames = src.n_frames;
        let n_channels = src.spec.channels.count();
        let n_samples = n_frames * n_channels;

        // Ensure that the capacity of the sample buffer is greater than or equal to the number
        // of samples that will be copied from the source buffer.
        assert!(self.capacity() >= n_samples);

        // The destination buffer slice.
        let dst_buf = &mut self.buf[..n_samples];

        // Provide slightly optimized interleave algorithms for Mono and Stereo buffers.
        match n_channels {
            // No channels, do nothing.
            0 => (),
            // Mono
            1 => {
                for (&s, d) in src.chan(0).iter().zip(dst_buf) {
                    *d = s.into_raw_sample();
                }
            }
            // Stereo
            2 => {
                let l_buf = src.chan(0);
                let r_buf = src.chan(1);

                for ((&l, &r), d) in l_buf.iter().zip(r_buf).zip(dst_buf.chunks_exact_mut(2)) {
                    d[0] = l.into_raw_sample();
                    d[1] = r.into_raw_sample();
                }
            }
            // 3+ channels
            _ => {
                for ch in 0..n_channels {
                    let src_ch = src.chan(ch);
                    let dst_ch_iter = dst_buf[ch..].iter_mut().step_by(n_channels);

                    for (&s, d) in src_ch.iter().zip(dst_ch_iter) {
                        *d = s.into_raw_sample();
                    }
                }
            }
        }

        self.n_written = n_samples;
    }
}