symphonia_core/io/
media_source_stream.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

use std::cmp;
use std::io;
use std::io::{IoSliceMut, Read, Seek};
use std::ops::Sub;

use super::SeekBuffered;
use super::{MediaSource, ReadBytes};

#[inline(always)]
fn end_of_stream_error<T>() -> io::Result<T> {
    Err(io::Error::new(io::ErrorKind::UnexpectedEof, "end of stream"))
}

/// `MediaSourceStreamOptions` specifies the buffering behaviour of a `MediaSourceStream`.
pub struct MediaSourceStreamOptions {
    /// The maximum buffer size. Must be a power of 2. Must be > 32kB.
    pub buffer_len: usize,
}

impl Default for MediaSourceStreamOptions {
    fn default() -> Self {
        MediaSourceStreamOptions { buffer_len: 64 * 1024 }
    }
}

/// `MediaSourceStream` is the main reader type for Symphonia.
///
/// By using type erasure and dynamic dispatch, `MediaSourceStream` wraps and hides the inner
/// reader from the consumer, allowing any typical `Read`er to be used with Symphonia in a generic
/// way, selectable at runtime.
///
/// `MediaSourceStream` is designed to provide speed and flexibility in a number of challenging I/O
/// scenarios.
///
/// First, to minimize system call and dynamic dispatch overhead on the inner reader, and to
/// amortize that overhead over many bytes, `MediaSourceStream` implements an exponentially growing
/// read-ahead buffer. The read-ahead length starts at 1kB, and doubles in length as more sequential
/// reads are performed until it reaches 32kB. Growing the read-ahead length over time reduces the
/// excess data buffered on consecutive `seek()` calls.
///
/// Second, to better support non-seekable sources, `MediaSourceStream` implements a configurable
/// length buffer cache. By default, the buffer caches allows backtracking by up-to the minimum of
/// either `buffer_len - 32kB` or the total number of bytes read since instantiation or the last
/// buffer cache invalidation. Note that regular a `seek()` will invalidate the buffer cache.
pub struct MediaSourceStream {
    /// The source reader.
    inner: Box<dyn MediaSource>,
    /// The ring buffer.
    ring: Box<[u8]>,
    /// The ring buffer's wrap-around mask.
    ring_mask: usize,
    /// The read position.
    read_pos: usize,
    /// The write position.
    write_pos: usize,
    /// The current block size for a new read.
    read_block_len: usize,
    /// Absolute position of the inner stream.
    abs_pos: u64,
    /// Relative position of the inner stream from the last seek or 0. This is a count of bytes
    /// read from the inner reader since instantiation or the last seek.
    rel_pos: u64,
}

impl MediaSourceStream {
    const MIN_BLOCK_LEN: usize = 1 * 1024;
    const MAX_BLOCK_LEN: usize = 32 * 1024;

    pub fn new(source: Box<dyn MediaSource>, options: MediaSourceStreamOptions) -> Self {
        // The buffer length must be a power of 2, and > the maximum read block length.
        assert!(options.buffer_len.count_ones() == 1);
        assert!(options.buffer_len > Self::MAX_BLOCK_LEN);

        MediaSourceStream {
            inner: source,
            ring: vec![0; options.buffer_len].into_boxed_slice(),
            ring_mask: options.buffer_len - 1,
            read_pos: 0,
            write_pos: 0,
            read_block_len: Self::MIN_BLOCK_LEN,
            abs_pos: 0,
            rel_pos: 0,
        }
    }

    /// Returns if the buffer has been exhausted This is a marginally more efficient way of checking
    /// if `unread_buffer_len() == 0`.
    #[inline(always)]
    fn is_buffer_exhausted(&self) -> bool {
        self.read_pos == self.write_pos
    }

    /// If the buffer has been exhausted, fetch a new block of data to replenish the buffer.
    fn fetch(&mut self) -> io::Result<()> {
        // Only fetch when the ring buffer is empty.
        if self.is_buffer_exhausted() {
            // Split the vector at the write position to get slices of the two contiguous regions of
            // the ring buffer.
            let (vec1, vec0) = self.ring.split_at_mut(self.write_pos);

            // If the first contiguous region of the ring buffer starting from the write position
            // has sufficient space to service the entire read do a simple read into that region's
            // slice.
            let actual_read_len = if vec0.len() >= self.read_block_len {
                self.inner.read(&mut vec0[..self.read_block_len])?
            }
            else {
                // Otherwise, perform a vectored read into the two contiguous region slices.
                let rem = self.read_block_len - vec0.len();

                let ring_vectors = &mut [IoSliceMut::new(vec0), IoSliceMut::new(&mut vec1[..rem])];

                self.inner.read_vectored(ring_vectors)?
            };

            // Increment the write position, taking into account wrap-around.
            self.write_pos = (self.write_pos + actual_read_len) & self.ring_mask;

            // Update the stream position accounting.
            self.abs_pos += actual_read_len as u64;
            self.rel_pos += actual_read_len as u64;

            // Grow the read block length exponentially to reduce the overhead of buffering on
            // consecutive seeks.
            self.read_block_len = cmp::min(self.read_block_len << 1, Self::MAX_BLOCK_LEN);
        }

        Ok(())
    }

    /// If the buffer has been exhausted, fetch a new block of data to replenish the buffer. If
    /// no more data could be fetched, return an end-of-stream error.
    fn fetch_or_eof(&mut self) -> io::Result<()> {
        self.fetch()?;

        if self.is_buffer_exhausted() {
            return end_of_stream_error();
        }

        Ok(())
    }

    /// Advances the read position by `len` bytes, taking into account wrap-around.
    #[inline(always)]
    fn consume(&mut self, len: usize) {
        self.read_pos = (self.read_pos + len) & self.ring_mask;
    }

    /// Gets the largest contiguous slice of buffered data starting from the read position.
    #[inline(always)]
    fn continguous_buf(&self) -> &[u8] {
        if self.write_pos >= self.read_pos {
            &self.ring[self.read_pos..self.write_pos]
        }
        else {
            &self.ring[self.read_pos..]
        }
    }

    /// Resets the read-ahead buffer, and sets the absolute stream position to `pos`.
    fn reset(&mut self, pos: u64) {
        self.read_pos = 0;
        self.write_pos = 0;
        self.read_block_len = Self::MIN_BLOCK_LEN;
        self.abs_pos = pos;
        self.rel_pos = 0;
    }
}

impl MediaSource for MediaSourceStream {
    #[inline]
    fn is_seekable(&self) -> bool {
        self.inner.is_seekable()
    }

    #[inline]
    fn byte_len(&self) -> Option<u64> {
        self.inner.byte_len()
    }
}

impl io::Read for MediaSourceStream {
    fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
        let read_len = buf.len();

        while !buf.is_empty() {
            // Refill the the buffer cache if required.
            self.fetch()?;

            // Consume bytes from the readable portion of the buffer cache and copy them into the
            // remaining portion of the caller's buffer.
            match self.continguous_buf().read(buf) {
                Ok(0) => break,
                Ok(count) => {
                    buf = &mut buf[count..];
                    self.consume(count);
                }
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }

        // The actual amount read is the original length of the caller's buffer minus the amount of
        // that buffer that is remaining.
        Ok(read_len - buf.len())
    }
}

impl io::Seek for MediaSourceStream {
    fn seek(&mut self, pos: io::SeekFrom) -> io::Result<u64> {
        // The current position of the underlying reader is ahead of the current position of the
        // MediaSourceStream by how ever many bytes have not been read from the read-ahead buffer
        // yet. When seeking from the current position adjust the position delta to offset that
        // difference.
        let pos = match pos {
            io::SeekFrom::Current(0) => return Ok(self.pos()),
            io::SeekFrom::Current(delta_pos) => {
                let delta = delta_pos - self.unread_buffer_len() as i64;
                self.inner.seek(io::SeekFrom::Current(delta))
            }
            _ => self.inner.seek(pos),
        }?;

        self.reset(pos);

        Ok(pos)
    }
}

impl ReadBytes for MediaSourceStream {
    #[inline(always)]
    fn read_byte(&mut self) -> io::Result<u8> {
        // This function, read_byte, is inlined for performance. To reduce code bloat, place the
        // read-ahead buffer replenishment in a seperate function. Call overhead will be negligible
        // compared to the actual underlying read.
        if self.is_buffer_exhausted() {
            self.fetch_or_eof()?;
        }

        let value = self.ring[self.read_pos];
        self.consume(1);

        Ok(value)
    }

    fn read_double_bytes(&mut self) -> io::Result<[u8; 2]> {
        let mut bytes = [0; 2];

        let buf = self.continguous_buf();

        if buf.len() >= 2 {
            bytes.copy_from_slice(&buf[..2]);
            self.consume(2);
        }
        else {
            for byte in bytes.iter_mut() {
                *byte = self.read_byte()?;
            }
        };

        Ok(bytes)
    }

    fn read_triple_bytes(&mut self) -> io::Result<[u8; 3]> {
        let mut bytes = [0; 3];

        let buf = self.continguous_buf();

        if buf.len() >= 3 {
            bytes.copy_from_slice(&buf[..3]);
            self.consume(3);
        }
        else {
            for byte in bytes.iter_mut() {
                *byte = self.read_byte()?;
            }
        };
        Ok(bytes)
    }

    fn read_quad_bytes(&mut self) -> io::Result<[u8; 4]> {
        let mut bytes = [0; 4];

        let buf = self.continguous_buf();

        if buf.len() >= 4 {
            bytes.copy_from_slice(&buf[..4]);
            self.consume(4);
        }
        else {
            for byte in bytes.iter_mut() {
                *byte = self.read_byte()?;
            }
        };
        Ok(bytes)
    }

    fn read_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        // Implemented via io::Read trait.
        let read = self.read(buf)?;

        // Unlike the io::Read trait, ByteStream returns an end-of-stream error when no more data
        // can be read. If a non-zero read is requested, and 0 bytes are read, return an
        // end-of-stream error.
        if !buf.is_empty() && read == 0 {
            end_of_stream_error()
        }
        else {
            Ok(read)
        }
    }

    fn read_buf_exact(&mut self, mut buf: &mut [u8]) -> io::Result<()> {
        while !buf.is_empty() {
            match self.read(buf) {
                Ok(0) => break,
                Ok(count) => {
                    buf = &mut buf[count..];
                }
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }

        if !buf.is_empty() {
            end_of_stream_error()
        }
        else {
            Ok(())
        }
    }

    fn scan_bytes_aligned<'a>(
        &mut self,
        _: &[u8],
        _: usize,
        _: &'a mut [u8],
    ) -> io::Result<&'a mut [u8]> {
        // Intentionally left unimplemented.
        unimplemented!();
    }

    fn ignore_bytes(&mut self, mut count: u64) -> io::Result<()> {
        // If the stream is seekable and the number of bytes to ignore is large, perform a seek
        // first. Note that ignored bytes are rewindable. Therefore, ensure the ring-buffer is
        // full after the seek just like if bytes were ignored by consuming them instead.
        let ring_len = self.ring.len() as u64;

        // Only apply the optimization if seeking 2x or more than the ring-buffer size.
        while count >= 2 * ring_len && self.is_seekable() {
            let delta = count.clamp(0, i64::MAX as u64).sub(ring_len);
            self.seek(io::SeekFrom::Current(delta as i64))?;
            count -= delta;
        }

        // Ignore the remaining bytes be consuming samples from the ring-buffer.
        while count > 0 {
            self.fetch_or_eof()?;
            let discard_count = cmp::min(self.unread_buffer_len() as u64, count);
            self.consume(discard_count as usize);
            count -= discard_count;
        }
        Ok(())
    }

    fn pos(&self) -> u64 {
        self.abs_pos - self.unread_buffer_len() as u64
    }
}

impl SeekBuffered for MediaSourceStream {
    fn ensure_seekback_buffer(&mut self, len: usize) {
        let ring_len = self.ring.len();

        // A fetch can overwrite a maximum of MAX_BLOCK_LEN bytes in the ring. Therefore, for there
        // to always be `len` bytes available for seekback, the ring must be len + MAX_BLOCK_LEN in
        // length. Round-up to the next power-of-2 as that is an invariant of the ring.
        let new_ring_len = (Self::MAX_BLOCK_LEN + len).next_power_of_two();

        // Only grow the ring if necessary.
        if ring_len < new_ring_len {
            // Allocate a new ring.
            let mut new_ring = vec![0; new_ring_len].into_boxed_slice();

            // Get the readable regions of the current ring.
            let (vec0, vec1) = if self.write_pos >= self.read_pos {
                (&self.ring[self.read_pos..self.write_pos], None)
            }
            else {
                (&self.ring[self.read_pos..], Some(&self.ring[..self.write_pos]))
            };

            // Copy contents from the old ring into new ring.
            let vec0_len = vec0.len();
            new_ring[..vec0_len].copy_from_slice(vec0);

            self.write_pos = if let Some(vec1) = vec1 {
                let total_len = vec0_len + vec1.len();
                new_ring[vec0_len..total_len].copy_from_slice(vec1);
                total_len
            }
            else {
                vec0_len
            };

            self.ring = new_ring;
            self.ring_mask = new_ring_len - 1;
            self.read_pos = 0;
        }
    }

    fn unread_buffer_len(&self) -> usize {
        if self.write_pos >= self.read_pos {
            self.write_pos - self.read_pos
        }
        else {
            self.write_pos + (self.ring.len() - self.read_pos)
        }
    }

    fn read_buffer_len(&self) -> usize {
        let unread_len = self.unread_buffer_len();

        cmp::min(self.ring.len(), self.rel_pos as usize) - unread_len
    }

    fn seek_buffered(&mut self, pos: u64) -> u64 {
        let old_pos = self.pos();

        // Forward seek.
        let delta = if pos > old_pos {
            assert!(pos - old_pos < std::isize::MAX as u64);
            (pos - old_pos) as isize
        }
        else if pos < old_pos {
            // Backward seek.
            assert!(old_pos - pos < std::isize::MAX as u64);
            -((old_pos - pos) as isize)
        }
        else {
            0
        };

        self.seek_buffered_rel(delta)
    }

    fn seek_buffered_rel(&mut self, delta: isize) -> u64 {
        if delta < 0 {
            let abs_delta = cmp::min((-delta) as usize, self.read_buffer_len());
            self.read_pos = (self.read_pos + self.ring.len() - abs_delta) & self.ring_mask;
        }
        else if delta > 0 {
            let abs_delta = cmp::min(delta as usize, self.unread_buffer_len());
            self.read_pos = (self.read_pos + abs_delta) & self.ring_mask;
        }

        self.pos()
    }
}

#[cfg(test)]
mod tests {
    use super::{MediaSourceStream, ReadBytes, SeekBuffered};
    use std::io::{Cursor, Read};

    /// Generate a random vector of bytes of the specified length using a PRNG.
    fn generate_random_bytes(len: usize) -> Box<[u8]> {
        let mut lcg: u32 = 0xec57c4bf;

        let mut bytes = vec![0; len];

        for quad in bytes.chunks_mut(4) {
            lcg = lcg.wrapping_mul(1664525).wrapping_add(1013904223);
            for (src, dest) in quad.iter_mut().zip(&lcg.to_le_bytes()) {
                *src = *dest;
            }
        }

        bytes.into_boxed_slice()
    }

    #[test]
    fn verify_mss_read() {
        let data = generate_random_bytes(5 * 96 * 1024);

        let ms = Cursor::new(data.clone());
        let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());

        // Each of the following scenarios should exercise read-ahead and wrap-around the stream's
        // internal ring buffer. This means reading > 64kB for each scenario. Between each scenario,
        // ignore an odd number of bytes.
        let mut buf = &data[..];

        // 96k single byte reads.
        for byte in &buf[..96 * 1024] {
            assert_eq!(*byte, mss.read_byte().unwrap());
        }

        mss.ignore_bytes(11).unwrap();

        buf = &buf[11 + (96 * 1024)..];

        // 48k two byte reads.
        for bytes in buf[..2 * 48 * 1024].chunks_exact(2) {
            assert_eq!(bytes, &mss.read_double_bytes().unwrap());
        }

        mss.ignore_bytes(33).unwrap();

        buf = &buf[33 + (2 * 48 * 1024)..];

        // 32k three byte reads.
        for bytes in buf[..3 * 32 * 1024].chunks_exact(3) {
            assert_eq!(bytes, &mss.read_triple_bytes().unwrap());
        }

        mss.ignore_bytes(55).unwrap();

        buf = &buf[55 + (3 * 32 * 1024)..];

        // 24k four byte reads.
        for bytes in buf[..4 * 24 * 1024].chunks_exact(4) {
            assert_eq!(bytes, &mss.read_quad_bytes().unwrap());
        }
    }

    #[test]
    fn verify_mss_read_to_end() {
        let data = generate_random_bytes(5 * 96 * 1024);

        let ms = Cursor::new(data.clone());
        let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());
        let mut output: Vec<u8> = Vec::new();
        assert_eq!(mss.read_to_end(&mut output).unwrap(), data.len());
        assert_eq!(output.into_boxed_slice(), data);
    }

    #[test]
    fn verify_mss_seek_buffered() {
        let data = generate_random_bytes(1024 * 1024);

        let ms = Cursor::new(data);
        let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());

        assert_eq!(mss.read_buffer_len(), 0);
        assert_eq!(mss.unread_buffer_len(), 0);

        mss.ignore_bytes(5122).unwrap();

        assert_eq!(5122, mss.pos());
        assert_eq!(mss.read_buffer_len(), 5122);

        let upper = mss.read_byte().unwrap();

        // Seek backwards.
        assert_eq!(mss.seek_buffered_rel(-1000), 4123);
        assert_eq!(mss.pos(), 4123);
        assert_eq!(mss.read_buffer_len(), 4123);

        // Seek forwards.
        assert_eq!(mss.seek_buffered_rel(999), 5122);
        assert_eq!(mss.pos(), 5122);
        assert_eq!(mss.read_buffer_len(), 5122);

        assert_eq!(upper, mss.read_byte().unwrap());
    }

    #[test]
    fn verify_reading_be() {
        let data = generate_random_bytes(1024 * 1024);

        let ms = Cursor::new(data);
        let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());

        // For slightly cleaner floats
        mss.ignore_bytes(2).unwrap();

        assert_eq!(mss.read_be_f32().unwrap(), -72818055000000000000000000000.0);
        assert_eq!(mss.read_be_f64().unwrap(), -0.000000000000011582640453292664);

        assert_eq!(mss.read_be_u16().unwrap(), 32624);
        assert_eq!(mss.read_be_u24().unwrap(), 6739677);
        assert_eq!(mss.read_be_u32().unwrap(), 1569552917);
        assert_eq!(mss.read_be_u64().unwrap(), 6091217585348000864);
    }

    #[test]
    fn verify_reading_le() {
        let data = generate_random_bytes(1024 * 1024);

        let ms = Cursor::new(data);
        let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());

        mss.ignore_bytes(1024).unwrap();

        assert_eq!(mss.read_f32().unwrap(), -0.00000000000000000000000000048426285);
        assert_eq!(mss.read_f64().unwrap(), -6444325820119113.0);

        assert_eq!(mss.read_u16().unwrap(), 36195);
        assert_eq!(mss.read_u24().unwrap(), 6710386);
        assert_eq!(mss.read_u32().unwrap(), 2378776723);
        assert_eq!(mss.read_u64().unwrap(), 5170196279331153683);
    }
}