symphonia_core/io/media_source_stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use std::cmp;
use std::io;
use std::io::{IoSliceMut, Read, Seek};
use std::ops::Sub;
use super::SeekBuffered;
use super::{MediaSource, ReadBytes};
#[inline(always)]
fn end_of_stream_error<T>() -> io::Result<T> {
Err(io::Error::new(io::ErrorKind::UnexpectedEof, "end of stream"))
}
/// `MediaSourceStreamOptions` specifies the buffering behaviour of a `MediaSourceStream`.
pub struct MediaSourceStreamOptions {
/// The maximum buffer size. Must be a power of 2. Must be > 32kB.
pub buffer_len: usize,
}
impl Default for MediaSourceStreamOptions {
fn default() -> Self {
MediaSourceStreamOptions { buffer_len: 64 * 1024 }
}
}
/// `MediaSourceStream` is the main reader type for Symphonia.
///
/// By using type erasure and dynamic dispatch, `MediaSourceStream` wraps and hides the inner
/// reader from the consumer, allowing any typical `Read`er to be used with Symphonia in a generic
/// way, selectable at runtime.
///
/// `MediaSourceStream` is designed to provide speed and flexibility in a number of challenging I/O
/// scenarios.
///
/// First, to minimize system call and dynamic dispatch overhead on the inner reader, and to
/// amortize that overhead over many bytes, `MediaSourceStream` implements an exponentially growing
/// read-ahead buffer. The read-ahead length starts at 1kB, and doubles in length as more sequential
/// reads are performed until it reaches 32kB. Growing the read-ahead length over time reduces the
/// excess data buffered on consecutive `seek()` calls.
///
/// Second, to better support non-seekable sources, `MediaSourceStream` implements a configurable
/// length buffer cache. By default, the buffer caches allows backtracking by up-to the minimum of
/// either `buffer_len - 32kB` or the total number of bytes read since instantiation or the last
/// buffer cache invalidation. Note that regular a `seek()` will invalidate the buffer cache.
pub struct MediaSourceStream {
/// The source reader.
inner: Box<dyn MediaSource>,
/// The ring buffer.
ring: Box<[u8]>,
/// The ring buffer's wrap-around mask.
ring_mask: usize,
/// The read position.
read_pos: usize,
/// The write position.
write_pos: usize,
/// The current block size for a new read.
read_block_len: usize,
/// Absolute position of the inner stream.
abs_pos: u64,
/// Relative position of the inner stream from the last seek or 0. This is a count of bytes
/// read from the inner reader since instantiation or the last seek.
rel_pos: u64,
}
impl MediaSourceStream {
const MIN_BLOCK_LEN: usize = 1 * 1024;
const MAX_BLOCK_LEN: usize = 32 * 1024;
pub fn new(source: Box<dyn MediaSource>, options: MediaSourceStreamOptions) -> Self {
// The buffer length must be a power of 2, and > the maximum read block length.
assert!(options.buffer_len.count_ones() == 1);
assert!(options.buffer_len > Self::MAX_BLOCK_LEN);
MediaSourceStream {
inner: source,
ring: vec![0; options.buffer_len].into_boxed_slice(),
ring_mask: options.buffer_len - 1,
read_pos: 0,
write_pos: 0,
read_block_len: Self::MIN_BLOCK_LEN,
abs_pos: 0,
rel_pos: 0,
}
}
/// Returns if the buffer has been exhausted This is a marginally more efficient way of checking
/// if `unread_buffer_len() == 0`.
#[inline(always)]
fn is_buffer_exhausted(&self) -> bool {
self.read_pos == self.write_pos
}
/// If the buffer has been exhausted, fetch a new block of data to replenish the buffer.
fn fetch(&mut self) -> io::Result<()> {
// Only fetch when the ring buffer is empty.
if self.is_buffer_exhausted() {
// Split the vector at the write position to get slices of the two contiguous regions of
// the ring buffer.
let (vec1, vec0) = self.ring.split_at_mut(self.write_pos);
// If the first contiguous region of the ring buffer starting from the write position
// has sufficient space to service the entire read do a simple read into that region's
// slice.
let actual_read_len = if vec0.len() >= self.read_block_len {
self.inner.read(&mut vec0[..self.read_block_len])?
}
else {
// Otherwise, perform a vectored read into the two contiguous region slices.
let rem = self.read_block_len - vec0.len();
let ring_vectors = &mut [IoSliceMut::new(vec0), IoSliceMut::new(&mut vec1[..rem])];
self.inner.read_vectored(ring_vectors)?
};
// Increment the write position, taking into account wrap-around.
self.write_pos = (self.write_pos + actual_read_len) & self.ring_mask;
// Update the stream position accounting.
self.abs_pos += actual_read_len as u64;
self.rel_pos += actual_read_len as u64;
// Grow the read block length exponentially to reduce the overhead of buffering on
// consecutive seeks.
self.read_block_len = cmp::min(self.read_block_len << 1, Self::MAX_BLOCK_LEN);
}
Ok(())
}
/// If the buffer has been exhausted, fetch a new block of data to replenish the buffer. If
/// no more data could be fetched, return an end-of-stream error.
fn fetch_or_eof(&mut self) -> io::Result<()> {
self.fetch()?;
if self.is_buffer_exhausted() {
return end_of_stream_error();
}
Ok(())
}
/// Advances the read position by `len` bytes, taking into account wrap-around.
#[inline(always)]
fn consume(&mut self, len: usize) {
self.read_pos = (self.read_pos + len) & self.ring_mask;
}
/// Gets the largest contiguous slice of buffered data starting from the read position.
#[inline(always)]
fn continguous_buf(&self) -> &[u8] {
if self.write_pos >= self.read_pos {
&self.ring[self.read_pos..self.write_pos]
}
else {
&self.ring[self.read_pos..]
}
}
/// Resets the read-ahead buffer, and sets the absolute stream position to `pos`.
fn reset(&mut self, pos: u64) {
self.read_pos = 0;
self.write_pos = 0;
self.read_block_len = Self::MIN_BLOCK_LEN;
self.abs_pos = pos;
self.rel_pos = 0;
}
}
impl MediaSource for MediaSourceStream {
#[inline]
fn is_seekable(&self) -> bool {
self.inner.is_seekable()
}
#[inline]
fn byte_len(&self) -> Option<u64> {
self.inner.byte_len()
}
}
impl io::Read for MediaSourceStream {
fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
let read_len = buf.len();
while !buf.is_empty() {
// Refill the the buffer cache if required.
self.fetch()?;
// Consume bytes from the readable portion of the buffer cache and copy them into the
// remaining portion of the caller's buffer.
match self.continguous_buf().read(buf) {
Ok(0) => break,
Ok(count) => {
buf = &mut buf[count..];
self.consume(count);
}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
// The actual amount read is the original length of the caller's buffer minus the amount of
// that buffer that is remaining.
Ok(read_len - buf.len())
}
}
impl io::Seek for MediaSourceStream {
fn seek(&mut self, pos: io::SeekFrom) -> io::Result<u64> {
// The current position of the underlying reader is ahead of the current position of the
// MediaSourceStream by how ever many bytes have not been read from the read-ahead buffer
// yet. When seeking from the current position adjust the position delta to offset that
// difference.
let pos = match pos {
io::SeekFrom::Current(0) => return Ok(self.pos()),
io::SeekFrom::Current(delta_pos) => {
let delta = delta_pos - self.unread_buffer_len() as i64;
self.inner.seek(io::SeekFrom::Current(delta))
}
_ => self.inner.seek(pos),
}?;
self.reset(pos);
Ok(pos)
}
}
impl ReadBytes for MediaSourceStream {
#[inline(always)]
fn read_byte(&mut self) -> io::Result<u8> {
// This function, read_byte, is inlined for performance. To reduce code bloat, place the
// read-ahead buffer replenishment in a seperate function. Call overhead will be negligible
// compared to the actual underlying read.
if self.is_buffer_exhausted() {
self.fetch_or_eof()?;
}
let value = self.ring[self.read_pos];
self.consume(1);
Ok(value)
}
fn read_double_bytes(&mut self) -> io::Result<[u8; 2]> {
let mut bytes = [0; 2];
let buf = self.continguous_buf();
if buf.len() >= 2 {
bytes.copy_from_slice(&buf[..2]);
self.consume(2);
}
else {
for byte in bytes.iter_mut() {
*byte = self.read_byte()?;
}
};
Ok(bytes)
}
fn read_triple_bytes(&mut self) -> io::Result<[u8; 3]> {
let mut bytes = [0; 3];
let buf = self.continguous_buf();
if buf.len() >= 3 {
bytes.copy_from_slice(&buf[..3]);
self.consume(3);
}
else {
for byte in bytes.iter_mut() {
*byte = self.read_byte()?;
}
};
Ok(bytes)
}
fn read_quad_bytes(&mut self) -> io::Result<[u8; 4]> {
let mut bytes = [0; 4];
let buf = self.continguous_buf();
if buf.len() >= 4 {
bytes.copy_from_slice(&buf[..4]);
self.consume(4);
}
else {
for byte in bytes.iter_mut() {
*byte = self.read_byte()?;
}
};
Ok(bytes)
}
fn read_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> {
// Implemented via io::Read trait.
let read = self.read(buf)?;
// Unlike the io::Read trait, ByteStream returns an end-of-stream error when no more data
// can be read. If a non-zero read is requested, and 0 bytes are read, return an
// end-of-stream error.
if !buf.is_empty() && read == 0 {
end_of_stream_error()
}
else {
Ok(read)
}
}
fn read_buf_exact(&mut self, mut buf: &mut [u8]) -> io::Result<()> {
while !buf.is_empty() {
match self.read(buf) {
Ok(0) => break,
Ok(count) => {
buf = &mut buf[count..];
}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
if !buf.is_empty() {
end_of_stream_error()
}
else {
Ok(())
}
}
fn scan_bytes_aligned<'a>(
&mut self,
_: &[u8],
_: usize,
_: &'a mut [u8],
) -> io::Result<&'a mut [u8]> {
// Intentionally left unimplemented.
unimplemented!();
}
fn ignore_bytes(&mut self, mut count: u64) -> io::Result<()> {
// If the stream is seekable and the number of bytes to ignore is large, perform a seek
// first. Note that ignored bytes are rewindable. Therefore, ensure the ring-buffer is
// full after the seek just like if bytes were ignored by consuming them instead.
let ring_len = self.ring.len() as u64;
// Only apply the optimization if seeking 2x or more than the ring-buffer size.
while count >= 2 * ring_len && self.is_seekable() {
let delta = count.clamp(0, i64::MAX as u64).sub(ring_len);
self.seek(io::SeekFrom::Current(delta as i64))?;
count -= delta;
}
// Ignore the remaining bytes be consuming samples from the ring-buffer.
while count > 0 {
self.fetch_or_eof()?;
let discard_count = cmp::min(self.unread_buffer_len() as u64, count);
self.consume(discard_count as usize);
count -= discard_count;
}
Ok(())
}
fn pos(&self) -> u64 {
self.abs_pos - self.unread_buffer_len() as u64
}
}
impl SeekBuffered for MediaSourceStream {
fn ensure_seekback_buffer(&mut self, len: usize) {
let ring_len = self.ring.len();
// A fetch can overwrite a maximum of MAX_BLOCK_LEN bytes in the ring. Therefore, for there
// to always be `len` bytes available for seekback, the ring must be len + MAX_BLOCK_LEN in
// length. Round-up to the next power-of-2 as that is an invariant of the ring.
let new_ring_len = (Self::MAX_BLOCK_LEN + len).next_power_of_two();
// Only grow the ring if necessary.
if ring_len < new_ring_len {
// Allocate a new ring.
let mut new_ring = vec![0; new_ring_len].into_boxed_slice();
// Get the readable regions of the current ring.
let (vec0, vec1) = if self.write_pos >= self.read_pos {
(&self.ring[self.read_pos..self.write_pos], None)
}
else {
(&self.ring[self.read_pos..], Some(&self.ring[..self.write_pos]))
};
// Copy contents from the old ring into new ring.
let vec0_len = vec0.len();
new_ring[..vec0_len].copy_from_slice(vec0);
self.write_pos = if let Some(vec1) = vec1 {
let total_len = vec0_len + vec1.len();
new_ring[vec0_len..total_len].copy_from_slice(vec1);
total_len
}
else {
vec0_len
};
self.ring = new_ring;
self.ring_mask = new_ring_len - 1;
self.read_pos = 0;
}
}
fn unread_buffer_len(&self) -> usize {
if self.write_pos >= self.read_pos {
self.write_pos - self.read_pos
}
else {
self.write_pos + (self.ring.len() - self.read_pos)
}
}
fn read_buffer_len(&self) -> usize {
let unread_len = self.unread_buffer_len();
cmp::min(self.ring.len(), self.rel_pos as usize) - unread_len
}
fn seek_buffered(&mut self, pos: u64) -> u64 {
let old_pos = self.pos();
// Forward seek.
let delta = if pos > old_pos {
assert!(pos - old_pos < std::isize::MAX as u64);
(pos - old_pos) as isize
}
else if pos < old_pos {
// Backward seek.
assert!(old_pos - pos < std::isize::MAX as u64);
-((old_pos - pos) as isize)
}
else {
0
};
self.seek_buffered_rel(delta)
}
fn seek_buffered_rel(&mut self, delta: isize) -> u64 {
if delta < 0 {
let abs_delta = cmp::min((-delta) as usize, self.read_buffer_len());
self.read_pos = (self.read_pos + self.ring.len() - abs_delta) & self.ring_mask;
}
else if delta > 0 {
let abs_delta = cmp::min(delta as usize, self.unread_buffer_len());
self.read_pos = (self.read_pos + abs_delta) & self.ring_mask;
}
self.pos()
}
}
#[cfg(test)]
mod tests {
use super::{MediaSourceStream, ReadBytes, SeekBuffered};
use std::io::{Cursor, Read};
/// Generate a random vector of bytes of the specified length using a PRNG.
fn generate_random_bytes(len: usize) -> Box<[u8]> {
let mut lcg: u32 = 0xec57c4bf;
let mut bytes = vec![0; len];
for quad in bytes.chunks_mut(4) {
lcg = lcg.wrapping_mul(1664525).wrapping_add(1013904223);
for (src, dest) in quad.iter_mut().zip(&lcg.to_le_bytes()) {
*src = *dest;
}
}
bytes.into_boxed_slice()
}
#[test]
fn verify_mss_read() {
let data = generate_random_bytes(5 * 96 * 1024);
let ms = Cursor::new(data.clone());
let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());
// Each of the following scenarios should exercise read-ahead and wrap-around the stream's
// internal ring buffer. This means reading > 64kB for each scenario. Between each scenario,
// ignore an odd number of bytes.
let mut buf = &data[..];
// 96k single byte reads.
for byte in &buf[..96 * 1024] {
assert_eq!(*byte, mss.read_byte().unwrap());
}
mss.ignore_bytes(11).unwrap();
buf = &buf[11 + (96 * 1024)..];
// 48k two byte reads.
for bytes in buf[..2 * 48 * 1024].chunks_exact(2) {
assert_eq!(bytes, &mss.read_double_bytes().unwrap());
}
mss.ignore_bytes(33).unwrap();
buf = &buf[33 + (2 * 48 * 1024)..];
// 32k three byte reads.
for bytes in buf[..3 * 32 * 1024].chunks_exact(3) {
assert_eq!(bytes, &mss.read_triple_bytes().unwrap());
}
mss.ignore_bytes(55).unwrap();
buf = &buf[55 + (3 * 32 * 1024)..];
// 24k four byte reads.
for bytes in buf[..4 * 24 * 1024].chunks_exact(4) {
assert_eq!(bytes, &mss.read_quad_bytes().unwrap());
}
}
#[test]
fn verify_mss_read_to_end() {
let data = generate_random_bytes(5 * 96 * 1024);
let ms = Cursor::new(data.clone());
let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());
let mut output: Vec<u8> = Vec::new();
assert_eq!(mss.read_to_end(&mut output).unwrap(), data.len());
assert_eq!(output.into_boxed_slice(), data);
}
#[test]
fn verify_mss_seek_buffered() {
let data = generate_random_bytes(1024 * 1024);
let ms = Cursor::new(data);
let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());
assert_eq!(mss.read_buffer_len(), 0);
assert_eq!(mss.unread_buffer_len(), 0);
mss.ignore_bytes(5122).unwrap();
assert_eq!(5122, mss.pos());
assert_eq!(mss.read_buffer_len(), 5122);
let upper = mss.read_byte().unwrap();
// Seek backwards.
assert_eq!(mss.seek_buffered_rel(-1000), 4123);
assert_eq!(mss.pos(), 4123);
assert_eq!(mss.read_buffer_len(), 4123);
// Seek forwards.
assert_eq!(mss.seek_buffered_rel(999), 5122);
assert_eq!(mss.pos(), 5122);
assert_eq!(mss.read_buffer_len(), 5122);
assert_eq!(upper, mss.read_byte().unwrap());
}
#[test]
fn verify_reading_be() {
let data = generate_random_bytes(1024 * 1024);
let ms = Cursor::new(data);
let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());
// For slightly cleaner floats
mss.ignore_bytes(2).unwrap();
assert_eq!(mss.read_be_f32().unwrap(), -72818055000000000000000000000.0);
assert_eq!(mss.read_be_f64().unwrap(), -0.000000000000011582640453292664);
assert_eq!(mss.read_be_u16().unwrap(), 32624);
assert_eq!(mss.read_be_u24().unwrap(), 6739677);
assert_eq!(mss.read_be_u32().unwrap(), 1569552917);
assert_eq!(mss.read_be_u64().unwrap(), 6091217585348000864);
}
#[test]
fn verify_reading_le() {
let data = generate_random_bytes(1024 * 1024);
let ms = Cursor::new(data);
let mut mss = MediaSourceStream::new(Box::new(ms), Default::default());
mss.ignore_bytes(1024).unwrap();
assert_eq!(mss.read_f32().unwrap(), -0.00000000000000000000000000048426285);
assert_eq!(mss.read_f64().unwrap(), -6444325820119113.0);
assert_eq!(mss.read_u16().unwrap(), 36195);
assert_eq!(mss.read_u24().unwrap(), 6710386);
assert_eq!(mss.read_u32().unwrap(), 2378776723);
assert_eq!(mss.read_u64().unwrap(), 5170196279331153683);
}
}