rodio/conversions/sample_rate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
use crate::conversions::Sample;
use std::mem;
/// Iterator that converts from a certain sample rate to another.
#[derive(Clone, Debug)]
pub struct SampleRateConverter<I>
where
I: Iterator,
{
/// The iterator that gives us samples.
input: I,
/// We convert chunks of `from` samples into chunks of `to` samples.
from: u32,
/// We convert chunks of `from` samples into chunks of `to` samples.
to: u32,
/// Number of channels in the stream
channels: cpal::ChannelCount,
/// One sample per channel, extracted from `input`.
current_frame: Vec<I::Item>,
/// Position of `current_sample` modulo `from`.
current_frame_pos_in_chunk: u32,
/// The samples right after `current_sample` (one per channel), extracted from `input`.
next_frame: Vec<I::Item>,
/// The position of the next sample that the iterator should return, modulo `to`.
/// This counter is incremented (modulo `to`) every time the iterator is called.
next_output_frame_pos_in_chunk: u32,
/// The buffer containing the samples waiting to be output.
output_buffer: Vec<I::Item>,
}
impl<I> SampleRateConverter<I>
where
I: Iterator,
I::Item: Sample,
{
///
///
/// # Panic
///
/// Panics if `from` or `to` are equal to 0.
///
#[inline]
pub fn new(
mut input: I,
from: cpal::SampleRate,
to: cpal::SampleRate,
num_channels: cpal::ChannelCount,
) -> SampleRateConverter<I> {
let from = from.0;
let to = to.0;
assert!(from >= 1);
assert!(to >= 1);
// finding greatest common divisor
let gcd = {
#[inline]
fn gcd(a: u32, b: u32) -> u32 {
if b == 0 {
a
} else {
gcd(b, a % b)
}
}
gcd(from, to)
};
let (first_samples, next_samples) = if from == to {
// if `from` == `to` == 1, then we just pass through
debug_assert_eq!(from, gcd);
(Vec::new(), Vec::new())
} else {
let first = input
.by_ref()
.take(num_channels as usize)
.collect::<Vec<_>>();
let next = input
.by_ref()
.take(num_channels as usize)
.collect::<Vec<_>>();
(first, next)
};
SampleRateConverter {
input,
from: from / gcd,
to: to / gcd,
channels: num_channels,
current_frame_pos_in_chunk: 0,
next_output_frame_pos_in_chunk: 0,
current_frame: first_samples,
next_frame: next_samples,
output_buffer: Vec::with_capacity(num_channels as usize - 1),
}
}
/// Destroys this iterator and returns the underlying iterator.
#[inline]
pub fn into_inner(self) -> I {
self.input
}
/// get mutable access to the iterator
#[inline]
pub fn inner_mut(&mut self) -> &mut I {
&mut self.input
}
fn next_input_frame(&mut self) {
self.current_frame_pos_in_chunk += 1;
mem::swap(&mut self.current_frame, &mut self.next_frame);
self.next_frame.clear();
for _ in 0..self.channels {
if let Some(i) = self.input.next() {
self.next_frame.push(i);
} else {
break;
}
}
}
}
impl<I> Iterator for SampleRateConverter<I>
where
I: Iterator,
I::Item: Sample + Clone,
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
// the algorithm below doesn't work if `self.from == self.to`
if self.from == self.to {
debug_assert_eq!(self.from, 1);
return self.input.next();
}
// Short circuit if there are some samples waiting.
if !self.output_buffer.is_empty() {
return Some(self.output_buffer.remove(0));
}
// The frame we are going to return from this function will be a linear interpolation
// between `self.current_frame` and `self.next_frame`.
if self.next_output_frame_pos_in_chunk == self.to {
// If we jump to the next frame, we reset the whole state.
self.next_output_frame_pos_in_chunk = 0;
self.next_input_frame();
while self.current_frame_pos_in_chunk != self.from {
self.next_input_frame();
}
self.current_frame_pos_in_chunk = 0;
} else {
// Finding the position of the first sample of the linear interpolation.
let req_left_sample =
(self.from * self.next_output_frame_pos_in_chunk / self.to) % self.from;
// Advancing `self.current_frame`, `self.next_frame` and
// `self.current_frame_pos_in_chunk` until the latter variable
// matches `req_left_sample`.
while self.current_frame_pos_in_chunk != req_left_sample {
self.next_input_frame();
debug_assert!(self.current_frame_pos_in_chunk < self.from);
}
}
// Merging `self.current_frame` and `self.next_frame` into `self.output_buffer`.
// Note that `self.output_buffer` can be truncated if there is not enough data in
// `self.next_frame`.
let mut result = None;
let numerator = (self.from * self.next_output_frame_pos_in_chunk) % self.to;
for (off, (cur, next)) in self
.current_frame
.iter()
.zip(self.next_frame.iter())
.enumerate()
{
let sample = Sample::lerp(*cur, *next, numerator, self.to);
if off == 0 {
result = Some(sample);
} else {
self.output_buffer.push(sample);
}
}
// Incrementing the counter for the next iteration.
self.next_output_frame_pos_in_chunk += 1;
if result.is_some() {
result
} else {
// draining `self.current_frame`
if !self.current_frame.is_empty() {
let r = Some(self.current_frame.remove(0));
mem::swap(&mut self.output_buffer, &mut self.current_frame);
self.current_frame.clear();
r
} else {
None
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let apply = |samples: usize| {
// `samples_after_chunk` will contain the number of samples remaining after the chunk
// currently being processed
let samples_after_chunk = samples;
// adding the samples of the next chunk that may have already been read
let samples_after_chunk = if self.current_frame_pos_in_chunk == self.from - 1 {
samples_after_chunk + self.next_frame.len()
} else {
samples_after_chunk
};
// removing the samples of the current chunk that have not yet been read
let samples_after_chunk = samples_after_chunk.saturating_sub(
self.from
.saturating_sub(self.current_frame_pos_in_chunk + 2) as usize
* usize::from(self.channels),
);
// calculating the number of samples after the transformation
// TODO: this is wrong here \|/
let samples_after_chunk = samples_after_chunk * self.to as usize / self.from as usize;
// `samples_current_chunk` will contain the number of samples remaining to be output
// for the chunk currently being processed
let samples_current_chunk = (self.to - self.next_output_frame_pos_in_chunk) as usize
* usize::from(self.channels);
samples_current_chunk + samples_after_chunk + self.output_buffer.len()
};
if self.from == self.to {
self.input.size_hint()
} else {
let (min, max) = self.input.size_hint();
(apply(min), max.map(apply))
}
}
}
impl<I> ExactSizeIterator for SampleRateConverter<I>
where
I: ExactSizeIterator,
I::Item: Sample + Clone,
{
}
#[cfg(test)]
mod test {
use super::SampleRateConverter;
use core::time::Duration;
use cpal::SampleRate;
use quickcheck::quickcheck;
// TODO: Remove once cpal 0.12.2 is released and the dependency is updated
// (cpal#483 implemented ops::Mul on SampleRate)
const fn multiply_rate(r: SampleRate, k: u32) -> SampleRate {
SampleRate(k * r.0)
}
quickcheck! {
/// Check that resampling an empty input produces no output.
fn empty(from: u32, to: u32, n: u16) -> () {
let from = if from == 0 { return; } else { SampleRate(from) };
let to = if to == 0 { return; } else { SampleRate(to) };
if n == 0 { return; }
let input: Vec<u16> = Vec::new();
let output =
SampleRateConverter::new(input.into_iter(), from, to, n)
.collect::<Vec<_>>();
assert_eq!(output, []);
}
/// Check that resampling to the same rate does not change the signal.
fn identity(from: u32, n: u16, input: Vec<u16>) -> () {
let from = if from == 0 { return; } else { SampleRate(from) };
if n == 0 { return; }
let output =
SampleRateConverter::new(input.clone().into_iter(), from, from, n)
.collect::<Vec<_>>();
assert_eq!(input, output);
}
/// Check that dividing the sample rate by k (integer) is the same as
/// dropping a sample from each channel.
fn divide_sample_rate(to: u32, k: u32, input: Vec<u16>, n: u16) -> () {
let to = if to == 0 { return; } else { SampleRate(to) };
let from = multiply_rate(to, k);
if k == 0 || n == 0 { return; }
// Truncate the input, so it contains an integer number of frames.
let input = {
let ns = n as usize;
let mut i = input;
i.truncate(ns * (i.len() / ns));
i
};
let output =
SampleRateConverter::new(input.clone().into_iter(), from, to, n)
.collect::<Vec<_>>();
assert_eq!(input.chunks_exact(n.into())
.step_by(k as usize).collect::<Vec<_>>().concat(),
output)
}
/// Check that, after multiplying the sample rate by k, every k-th
/// sample in the output matches exactly with the input.
fn multiply_sample_rate(from: u32, k: u32, input: Vec<u16>, n: u16) -> () {
let from = if from == 0 { return; } else { SampleRate(from) };
let to = multiply_rate(from, k);
if k == 0 || n == 0 { return; }
// Truncate the input, so it contains an integer number of frames.
let input = {
let ns = n as usize;
let mut i = input;
i.truncate(ns * (i.len() / ns));
i
};
let output =
SampleRateConverter::new(input.clone().into_iter(), from, to, n)
.collect::<Vec<_>>();
assert_eq!(input,
output.chunks_exact(n.into())
.step_by(k as usize).collect::<Vec<_>>().concat()
)
}
#[ignore]
/// Check that resampling does not change the audio duration,
/// except by a negligible amount (± 1ms). Reproduces #316.
/// Ignored, pending a bug fix.
fn preserve_durations(d: Duration, freq: f32, to: u32) -> () {
use crate::source::{SineWave, Source};
let to = if to == 0 { return; } else { SampleRate(to) };
let source = SineWave::new(freq).take_duration(d);
let from = SampleRate(source.sample_rate());
let resampled =
SampleRateConverter::new(source, from, to, 1);
let duration =
Duration::from_secs_f32(resampled.count() as f32 / to.0 as f32);
let delta = if d < duration { duration - d } else { d - duration };
assert!(delta < Duration::from_millis(1),
"Resampled duration ({:?}) is not close to original ({:?}); Δ = {:?}",
duration, d, delta);
}
}
#[test]
fn upsample() {
let input = vec![2u16, 16, 4, 18, 6, 20, 8, 22];
let output =
SampleRateConverter::new(input.into_iter(), SampleRate(2000), SampleRate(3000), 2);
assert_eq!(output.len(), 12);
let output = output.collect::<Vec<_>>();
assert_eq!(output, [2, 16, 3, 17, 4, 18, 6, 20, 7, 21, 8, 22]);
}
}