1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
Copyright 2017 Takashi Ogura

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#![allow(clippy::trivially_copy_pass_by_ref)]
use k::nalgebra as na;
use na::RealField;
use ncollide3d::shape::Compound;

use super::joint_path_planner::JointPathPlanner;
use crate::errors::*;

/// Joint path planner which supports inverse kinematics
pub struct JointPathPlannerWithIk<T, I>
where
    I: k::InverseKinematicsSolver<T>,
    T: RealField + Copy + k::SubsetOf<f64>,
{
    /// Joint Path Planner to be used to find collision free path
    ///
    /// Currently, `JointPathPlanner<N, k::Chain<N>>` is used.
    pub path_planner: JointPathPlanner<T>,
    /// Inverse kinematics solver to find the goal joint angles
    pub ik_solver: I,
}

impl<T, I> JointPathPlannerWithIk<T, I>
where
    //T: RealField + num_traits::Float + k::SubsetOf<f64>,
    T: RealField + k::SubsetOf<f64> + num_traits::Float,
    I: k::InverseKinematicsSolver<T>,
{
    /// Create instance from `JointPathPlannerBuilder` and `InverseKinematicsSolver`
    ///
    /// # Example
    ///
    /// ```
    /// // Create path planner with loading urdf file and set end link name
    /// let robot = k::Chain::from_urdf_file("sample.urdf").unwrap();
    /// let planner = openrr_planner::JointPathPlannerBuilder::from_urdf_file("sample.urdf")
    ///     .unwrap()
    ///     .collision_check_margin(0.01)
    ///     .reference_robot(std::sync::Arc::new(robot))
    ///     .finalize()
    ///     .unwrap();
    /// // Create inverse kinematics solver
    /// let solver = openrr_planner::JacobianIkSolver::default();
    /// // Create path planner with IK solver
    /// let _planner = openrr_planner::JointPathPlannerWithIk::new(planner, solver);
    /// ```
    pub fn new(path_planner: JointPathPlanner<T>, ik_solver: I) -> Self {
        Self {
            path_planner,
            ik_solver,
        }
    }

    /// Just solve IK and do not plan
    pub fn solve_ik(
        &mut self,
        arm: &k::SerialChain<T>,
        target_pose: &na::Isometry3<T>,
    ) -> Result<()> {
        Ok(self.ik_solver.solve(arm, target_pose)?)
    }

    /// Just solve IK with constraints and do not plan
    pub fn solve_ik_with_constraints(
        &mut self,
        arm: &k::SerialChain<T>,
        target_pose: &na::Isometry3<T>,
        c: &k::Constraints,
    ) -> Result<()> {
        Ok(self.ik_solver.solve_with_constraints(arm, target_pose, c)?)
    }

    pub fn colliding_link_names(&self, objects: &Compound<T>) -> Vec<String> {
        self.path_planner.env_collision_link_names(objects)
    }

    /// Solve IK and get the path to the final joint positions
    pub fn plan_with_ik(
        &mut self,
        target_name: &str,
        target_pose: &na::Isometry3<T>,
        objects: &Compound<T>,
    ) -> Result<Vec<Vec<T>>> {
        self.plan_with_ik_with_constraints(
            target_name,
            target_pose,
            objects,
            &k::Constraints::default(),
        )
    }

    /// Solve IK with constraints and get the path to the final joint positions
    pub fn plan_with_ik_with_constraints(
        &mut self,
        target_name: &str,
        target_pose: &na::Isometry3<T>,
        objects: &Compound<T>,
        constraints: &k::Constraints,
    ) -> Result<Vec<Vec<T>>> {
        self.path_planner.sync_joint_positions_with_reference();

        let end_link = self
            .path_planner
            .collision_check_robot()
            .find(target_name)
            .ok_or_else(|| Error::NotFound(target_name.to_owned()))?;
        let arm = k::SerialChain::from_end(end_link);
        let initial = arm.joint_positions();
        let using_joint_names = arm
            .iter_joints()
            .map(|j| j.name.clone())
            .collect::<Vec<String>>();
        self.ik_solver
            .solve_with_constraints(&arm, target_pose, constraints)?;
        let goal = arm.joint_positions();
        self.path_planner
            .plan(using_joint_names.as_slice(), &initial, &goal, objects)
    }

    /// Do not solve IK but get the path to the target joint positions
    pub fn plan_joints<K>(
        &mut self,
        using_joint_names: &[String],
        start_angles: &[T],
        goal_angles: &[T],
        objects: &Compound<T>,
    ) -> Result<Vec<Vec<T>>> {
        self.path_planner
            .plan(using_joint_names, start_angles, goal_angles, objects)
    }

    /// Calculate the transforms of all of the links
    pub fn update_transforms(&self) -> Vec<na::Isometry3<T>> {
        self.path_planner.update_transforms()
    }

    /// Get the names of the links
    pub fn joint_names(&self) -> Vec<String> {
        self.path_planner.joint_names()
    }
}