1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
Copyright 2017 Takashi Ogura
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#![allow(clippy::trivially_copy_pass_by_ref)]
use k::nalgebra as na;
use na::RealField;
use ncollide3d::shape::Compound;
use super::joint_path_planner::JointPathPlanner;
use crate::errors::*;
/// Joint path planner which supports inverse kinematics
pub struct JointPathPlannerWithIk<T, I>
where
I: k::InverseKinematicsSolver<T>,
T: RealField + Copy + k::SubsetOf<f64>,
{
/// Joint Path Planner to be used to find collision free path
///
/// Currently, `JointPathPlanner<N, k::Chain<N>>` is used.
pub path_planner: JointPathPlanner<T>,
/// Inverse kinematics solver to find the goal joint angles
pub ik_solver: I,
}
impl<T, I> JointPathPlannerWithIk<T, I>
where
//T: RealField + num_traits::Float + k::SubsetOf<f64>,
T: RealField + k::SubsetOf<f64> + num_traits::Float,
I: k::InverseKinematicsSolver<T>,
{
/// Create instance from `JointPathPlannerBuilder` and `InverseKinematicsSolver`
///
/// # Example
///
/// ```
/// // Create path planner with loading urdf file and set end link name
/// let robot = k::Chain::from_urdf_file("sample.urdf").unwrap();
/// let planner = openrr_planner::JointPathPlannerBuilder::from_urdf_file("sample.urdf")
/// .unwrap()
/// .collision_check_margin(0.01)
/// .reference_robot(std::sync::Arc::new(robot))
/// .finalize()
/// .unwrap();
/// // Create inverse kinematics solver
/// let solver = openrr_planner::JacobianIkSolver::default();
/// // Create path planner with IK solver
/// let _planner = openrr_planner::JointPathPlannerWithIk::new(planner, solver);
/// ```
pub fn new(path_planner: JointPathPlanner<T>, ik_solver: I) -> Self {
Self {
path_planner,
ik_solver,
}
}
/// Just solve IK and do not plan
pub fn solve_ik(
&mut self,
arm: &k::SerialChain<T>,
target_pose: &na::Isometry3<T>,
) -> Result<()> {
Ok(self.ik_solver.solve(arm, target_pose)?)
}
/// Just solve IK with constraints and do not plan
pub fn solve_ik_with_constraints(
&mut self,
arm: &k::SerialChain<T>,
target_pose: &na::Isometry3<T>,
c: &k::Constraints,
) -> Result<()> {
Ok(self.ik_solver.solve_with_constraints(arm, target_pose, c)?)
}
pub fn colliding_link_names(&self, objects: &Compound<T>) -> Vec<String> {
self.path_planner.env_collision_link_names(objects)
}
/// Solve IK and get the path to the final joint positions
pub fn plan_with_ik(
&mut self,
target_name: &str,
target_pose: &na::Isometry3<T>,
objects: &Compound<T>,
) -> Result<Vec<Vec<T>>> {
self.plan_with_ik_with_constraints(
target_name,
target_pose,
objects,
&k::Constraints::default(),
)
}
/// Solve IK with constraints and get the path to the final joint positions
pub fn plan_with_ik_with_constraints(
&mut self,
target_name: &str,
target_pose: &na::Isometry3<T>,
objects: &Compound<T>,
constraints: &k::Constraints,
) -> Result<Vec<Vec<T>>> {
self.path_planner.sync_joint_positions_with_reference();
let end_link = self
.path_planner
.collision_check_robot()
.find(target_name)
.ok_or_else(|| Error::NotFound(target_name.to_owned()))?;
let arm = k::SerialChain::from_end(end_link);
let initial = arm.joint_positions();
let using_joint_names = arm
.iter_joints()
.map(|j| j.name.clone())
.collect::<Vec<String>>();
self.ik_solver
.solve_with_constraints(&arm, target_pose, constraints)?;
let goal = arm.joint_positions();
self.path_planner
.plan(using_joint_names.as_slice(), &initial, &goal, objects)
}
/// Do not solve IK but get the path to the target joint positions
pub fn plan_joints<K>(
&mut self,
using_joint_names: &[String],
start_angles: &[T],
goal_angles: &[T],
objects: &Compound<T>,
) -> Result<Vec<Vec<T>>> {
self.path_planner
.plan(using_joint_names, start_angles, goal_angles, objects)
}
/// Calculate the transforms of all of the links
pub fn update_transforms(&self) -> Vec<na::Isometry3<T>> {
self.path_planner.update_transforms()
}
/// Get the names of the links
pub fn joint_names(&self) -> Vec<String> {
self.path_planner.joint_names()
}
}