bitflags/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
Generate types for C-style flags with ergonomic APIs.

# Getting started

Add `bitflags` to your `Cargo.toml`:

```toml
[dependencies.bitflags]
version = "2.7.0"
```

## Generating flags types

Use the [`bitflags`] macro to generate flags types:

```rust
use bitflags::bitflags;

bitflags! {
    pub struct Flags: u32 {
        const A = 0b00000001;
        const B = 0b00000010;
        const C = 0b00000100;
    }
}
```

See the docs for the `bitflags` macro for the full syntax.

Also see the [`example_generated`](./example_generated/index.html) module for an example of what the `bitflags` macro generates for a flags type.

### Externally defined flags

If you're generating flags types for an external source, such as a C API, you can define
an extra unnamed flag as a mask of all bits the external source may ever set. Usually this would be all bits (`!0`):

```rust
# use bitflags::bitflags;
bitflags! {
    pub struct Flags: u32 {
        const A = 0b00000001;
        const B = 0b00000010;
        const C = 0b00000100;

        // The source may set any bits
        const _ = !0;
    }
}
```

Why should you do this? Generated methods like `all` and truncating operators like `!` only consider
bits in defined flags. Adding an unnamed flag makes those methods consider additional bits,
without generating additional constants for them. It helps compatibility when the external source
may start setting additional bits at any time. The [known and unknown bits](#known-and-unknown-bits)
section has more details on this behavior.

### Custom derives

You can derive some traits on generated flags types if you enable Cargo features. The following
libraries are currently supported:

- `serde`: Support `#[derive(Serialize, Deserialize)]`, using text for human-readable formats,
  and a raw number for binary formats.
- `arbitrary`: Support `#[derive(Arbitrary)]`, only generating flags values with known bits.
- `bytemuck`: Support `#[derive(Pod, Zeroable)]`, for casting between flags values and their
  underlying bits values.

You can also define your own flags type outside of the [`bitflags`] macro and then use it to generate methods.
This can be useful if you need a custom `#[derive]` attribute for a library that `bitflags` doesn't
natively support:

```rust
# use std::fmt::Debug as SomeTrait;
# use bitflags::bitflags;
#[derive(SomeTrait)]
pub struct Flags(u32);

bitflags! {
    impl Flags: u32 {
        const A = 0b00000001;
        const B = 0b00000010;
        const C = 0b00000100;
    }
}
```

### Adding custom methods

The [`bitflags`] macro supports attributes on generated flags types within the macro itself, while
`impl` blocks can be added outside of it:

```rust
# use bitflags::bitflags;
bitflags! {
    // Attributes can be applied to flags types
    #[repr(transparent)]
    #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
    pub struct Flags: u32 {
        const A = 0b00000001;
        const B = 0b00000010;
        const C = 0b00000100;
    }
}

// Impl blocks can be added to flags types
impl Flags {
    pub fn as_u64(&self) -> u64 {
        self.bits() as u64
    }
}
```

## Working with flags values

Use generated constants and standard bitwise operators to interact with flags values:

```rust
# use bitflags::bitflags;
# bitflags! {
#     #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#     pub struct Flags: u32 {
#         const A = 0b00000001;
#         const B = 0b00000010;
#         const C = 0b00000100;
#     }
# }
// union
let ab = Flags::A | Flags::B;

// intersection
let a = ab & Flags::A;

// difference
let b = ab - Flags::A;

// complement
let c = !ab;
```

See the docs for the [`Flags`] trait for more details on operators and how they behave.

# Formatting and parsing

`bitflags` defines a text format that can be used to convert any flags value to and from strings.

See the [`parser`] module for more details.

# Specification

The terminology and behavior of generated flags types is
[specified in the source repository](https://github.com/bitflags/bitflags/blob/main/spec.md).
Details are repeated in these docs where appropriate, but is exhaustively listed in the spec. Some
things are worth calling out explicitly here.

## Flags types, flags values, flags

The spec and these docs use consistent terminology to refer to things in the bitflags domain:

- **Bits type**: A type that defines a fixed number of bits at specific locations.
- **Flag**: A set of bits in a bits type that may have a unique name.
- **Flags type**: A set of defined flags over a specific bits type.
- **Flags value**: An instance of a flags type using its specific bits value for storage.

```
# use bitflags::bitflags;
bitflags! {
    struct FlagsType: u8 {
//                    -- Bits type
//         --------- Flags type
        const A = 1;
//            ----- Flag
    }
}

let flag = FlagsType::A;
//  ---- Flags value
```

## Known and unknown bits

Any bits in a flag you define are called _known bits_. Any other bits are _unknown bits_.
In the following flags type:

```
# use bitflags::bitflags;
bitflags! {
    struct Flags: u8 {
        const A = 1;
        const B = 1 << 1;
        const C = 1 << 2;
    }
}
```

The known bits are `0b0000_0111` and the unknown bits are `0b1111_1000`.

`bitflags` doesn't guarantee that a flags value will only ever have known bits set, but some operators
will unset any unknown bits they encounter. In a future version of `bitflags`, all operators will
unset unknown bits.

If you're using `bitflags` for flags types defined externally, such as from C, you probably want all
bits to be considered known, in case that external source changes. You can do this using an unnamed
flag, as described in [externally defined flags](#externally-defined-flags).

## Zero-bit flags

Flags with no bits set should be avoided because they interact strangely with [`Flags::contains`]
and [`Flags::intersects`]. A zero-bit flag is always contained, but is never intersected. The
names of zero-bit flags can be parsed, but are never formatted.

## Multi-bit flags

Flags that set multiple bits should be avoided unless each bit is also in a single-bit flag.
Take the following flags type as an example:

```
# use bitflags::bitflags;
bitflags! {
    struct Flags: u8 {
        const A = 1;
        const B = 1 | 1 << 1;
    }
}
```

The result of `Flags::A ^ Flags::B` is `0b0000_0010`, which doesn't correspond to either
`Flags::A` or `Flags::B` even though it's still a known bit.
*/

#![cfg_attr(not(any(feature = "std", test)), no_std)]
#![cfg_attr(not(test), forbid(unsafe_code))]
#![cfg_attr(test, allow(mixed_script_confusables))]

#[doc(inline)]
pub use traits::{Bits, Flag, Flags};

pub mod iter;
pub mod parser;

mod traits;

#[doc(hidden)]
pub mod __private {
    #[allow(unused_imports)]
    // Easier than conditionally checking any optional external dependencies
    pub use crate::{external::__private::*, traits::__private::*};

    pub use core;
}

#[allow(unused_imports)]
pub use external::*;

#[allow(deprecated)]
pub use traits::BitFlags;

/*
How does the bitflags crate work?

This library generates a `struct` in the end-user's crate with a bunch of constants on it that represent flags.
The difference between `bitflags` and a lot of other libraries is that we don't actually control the generated `struct` in the end.
It's part of the end-user's crate, so it belongs to them. That makes it difficult to extend `bitflags` with new functionality
because we could end up breaking valid code that was already written.

Our solution is to split the type we generate into two: the public struct owned by the end-user, and an internal struct owned by `bitflags` (us).
To give you an example, let's say we had a crate that called `bitflags!`:

```rust
bitflags! {
    pub struct MyFlags: u32 {
        const A = 1;
        const B = 2;
    }
}
```

What they'd end up with looks something like this:

```rust
pub struct MyFlags(<MyFlags as PublicFlags>::InternalBitFlags);

const _: () = {
    #[repr(transparent)]
    #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
    pub struct MyInternalBitFlags {
        bits: u32,
    }

    impl PublicFlags for MyFlags {
        type Internal = InternalBitFlags;
    }
};
```

If we want to expose something like a new trait impl for generated flags types, we add it to our generated `MyInternalBitFlags`,
and let `#[derive]` on `MyFlags` pick up that implementation, if an end-user chooses to add one.

The public API is generated in the `__impl_public_flags!` macro, and the internal API is generated in
the `__impl_internal_flags!` macro.

The macros are split into 3 modules:

- `public`: where the user-facing flags types are generated.
- `internal`: where the `bitflags`-facing flags types are generated.
- `external`: where external library traits are implemented conditionally.
*/

/**
Generate a flags type.

# `struct` mode

A declaration that begins with `$vis struct` will generate a `struct` for a flags type, along with
methods and trait implementations for it. The body of the declaration defines flags as constants,
where each constant is a flags value of the generated flags type.

## Examples

Generate a flags type using `u8` as the bits type:

```
# use bitflags::bitflags;
bitflags! {
    struct Flags: u8 {
        const A = 1;
        const B = 1 << 1;
        const C = 0b0000_0100;
    }
}
```

Flags types are private by default and accept standard visibility modifiers. Flags themselves
are always public:

```
# use bitflags::bitflags;
bitflags! {
    pub struct Flags: u8 {
        // Constants are always `pub`
        const A = 1;
    }
}
```

Flags may refer to other flags using their [`Flags::bits`] value:

```
# use bitflags::bitflags;
bitflags! {
    struct Flags: u8 {
        const A = 1;
        const B = 1 << 1;
        const AB = Flags::A.bits() | Flags::B.bits();
    }
}
```

A single `bitflags` invocation may include zero or more flags type declarations:

```
# use bitflags::bitflags;
bitflags! {}

bitflags! {
    struct Flags1: u8 {
        const A = 1;
    }

    struct Flags2: u8 {
        const A = 1;
    }
}
```

# `impl` mode

A declaration that begins with `impl` will only generate methods and trait implementations for the
`struct` defined outside of the `bitflags` macro.

The struct itself must be a newtype using the bits type as its field.

The syntax for `impl` mode is identical to `struct` mode besides the starting token.

## Examples

Implement flags methods and traits for a custom flags type using `u8` as its underlying bits type:

```
# use bitflags::bitflags;
struct Flags(u8);

bitflags! {
    impl Flags: u8 {
        const A = 1;
        const B = 1 << 1;
        const C = 0b0000_0100;
    }
}
```

# Named and unnamed flags

Constants in the body of a declaration are flags. The identifier of the constant is the name of
the flag. If the identifier is `_`, then the flag is unnamed. Unnamed flags don't appear in the
generated API, but affect how bits are truncated.

## Examples

Adding an unnamed flag that makes all bits known:

```
# use bitflags::bitflags;
bitflags! {
    struct Flags: u8 {
        const A = 1;
        const B = 1 << 1;

        const _ = !0;
    }
}
```

Flags types may define multiple unnamed flags:

```
# use bitflags::bitflags;
bitflags! {
    struct Flags: u8 {
        const _ = 1;
        const _ = 1 << 1;
    }
}
```
*/
#[macro_export]
macro_rules! bitflags {
    (
        $(#[$outer:meta])*
        $vis:vis struct $BitFlags:ident: $T:ty {
            $(
                $(#[$inner:ident $($args:tt)*])*
                const $Flag:tt = $value:expr;
            )*
        }

        $($t:tt)*
    ) => {
        // Declared in the scope of the `bitflags!` call
        // This type appears in the end-user's API
        $crate::__declare_public_bitflags! {
            $(#[$outer])*
            $vis struct $BitFlags
        }

        // Workaround for: https://github.com/bitflags/bitflags/issues/320
        $crate::__impl_public_bitflags_consts! {
            $BitFlags: $T {
                $(
                    $(#[$inner $($args)*])*
                    const $Flag = $value;
                )*
            }
        }

        #[allow(
            dead_code,
            deprecated,
            unused_doc_comments,
            unused_attributes,
            unused_mut,
            unused_imports,
            non_upper_case_globals,
            clippy::assign_op_pattern,
            clippy::indexing_slicing,
            clippy::same_name_method,
            clippy::iter_without_into_iter,
        )]
        const _: () = {
            // Declared in a "hidden" scope that can't be reached directly
            // These types don't appear in the end-user's API
            $crate::__declare_internal_bitflags! {
                $vis struct InternalBitFlags: $T
            }

            $crate::__impl_internal_bitflags! {
                InternalBitFlags: $T, $BitFlags {
                    $(
                        $(#[$inner $($args)*])*
                        const $Flag = $value;
                    )*
                }
            }

            // This is where new library trait implementations can be added
            $crate::__impl_external_bitflags! {
                InternalBitFlags: $T, $BitFlags {
                    $(
                        $(#[$inner $($args)*])*
                        const $Flag;
                    )*
                }
            }

            $crate::__impl_public_bitflags_forward! {
                $BitFlags: $T, InternalBitFlags
            }

            $crate::__impl_public_bitflags_ops! {
                $BitFlags
            }

            $crate::__impl_public_bitflags_iter! {
                $BitFlags: $T, $BitFlags
            }
        };

        $crate::bitflags! {
            $($t)*
        }
    };
    (
        $(#[$outer:meta])*
        impl $BitFlags:ident: $T:ty {
            $(
                $(#[$inner:ident $($args:tt)*])*
                const $Flag:tt = $value:expr;
            )*
        }

        $($t:tt)*
    ) => {
        $crate::__impl_public_bitflags_consts! {
            $BitFlags: $T {
                $(
                    $(#[$inner $($args)*])*
                    const $Flag = $value;
                )*
            }
        }

        #[allow(
            dead_code,
            deprecated,
            unused_doc_comments,
            unused_attributes,
            unused_mut,
            unused_imports,
            non_upper_case_globals,
            clippy::assign_op_pattern,
            clippy::iter_without_into_iter,
        )]
        const _: () = {
            $crate::__impl_public_bitflags! {
                $(#[$outer])*
                $BitFlags: $T, $BitFlags {
                    $(
                        $(#[$inner $($args)*])*
                        const $Flag = $value;
                    )*
                }
            }

            $crate::__impl_public_bitflags_ops! {
                $BitFlags
            }

            $crate::__impl_public_bitflags_iter! {
                $BitFlags: $T, $BitFlags
            }
        };

        $crate::bitflags! {
            $($t)*
        }
    };
    () => {};
}

/// Implement functions on bitflags types.
///
/// We need to be careful about adding new methods and trait implementations here because they
/// could conflict with items added by the end-user.
#[macro_export]
#[doc(hidden)]
macro_rules! __impl_bitflags {
    (
        $(#[$outer:meta])*
        $PublicBitFlags:ident: $T:ty {
            fn empty() $empty:block
            fn all() $all:block
            fn bits($bits0:ident) $bits:block
            fn from_bits($from_bits0:ident) $from_bits:block
            fn from_bits_truncate($from_bits_truncate0:ident) $from_bits_truncate:block
            fn from_bits_retain($from_bits_retain0:ident) $from_bits_retain:block
            fn from_name($from_name0:ident) $from_name:block
            fn is_empty($is_empty0:ident) $is_empty:block
            fn is_all($is_all0:ident) $is_all:block
            fn intersects($intersects0:ident, $intersects1:ident) $intersects:block
            fn contains($contains0:ident, $contains1:ident) $contains:block
            fn insert($insert0:ident, $insert1:ident) $insert:block
            fn remove($remove0:ident, $remove1:ident) $remove:block
            fn toggle($toggle0:ident, $toggle1:ident) $toggle:block
            fn set($set0:ident, $set1:ident, $set2:ident) $set:block
            fn intersection($intersection0:ident, $intersection1:ident) $intersection:block
            fn union($union0:ident, $union1:ident) $union:block
            fn difference($difference0:ident, $difference1:ident) $difference:block
            fn symmetric_difference($symmetric_difference0:ident, $symmetric_difference1:ident) $symmetric_difference:block
            fn complement($complement0:ident) $complement:block
        }
    ) => {
        #[allow(dead_code, deprecated, unused_attributes)]
        $(#[$outer])*
        impl $PublicBitFlags {
            /// Get a flags value with all bits unset.
            #[inline]
            pub const fn empty() -> Self {
                $empty
            }

            /// Get a flags value with all known bits set.
            #[inline]
            pub const fn all() -> Self {
                $all
            }

            /// Get the underlying bits value.
            ///
            /// The returned value is exactly the bits set in this flags value.
            #[inline]
            pub const fn bits(&self) -> $T {
                let $bits0 = self;
                $bits
            }

            /// Convert from a bits value.
            ///
            /// This method will return `None` if any unknown bits are set.
            #[inline]
            pub const fn from_bits(bits: $T) -> $crate::__private::core::option::Option<Self> {
                let $from_bits0 = bits;
                $from_bits
            }

            /// Convert from a bits value, unsetting any unknown bits.
            #[inline]
            pub const fn from_bits_truncate(bits: $T) -> Self {
                let $from_bits_truncate0 = bits;
                $from_bits_truncate
            }

            /// Convert from a bits value exactly.
            #[inline]
            pub const fn from_bits_retain(bits: $T) -> Self {
                let $from_bits_retain0 = bits;
                $from_bits_retain
            }

            /// Get a flags value with the bits of a flag with the given name set.
            ///
            /// This method will return `None` if `name` is empty or doesn't
            /// correspond to any named flag.
            #[inline]
            pub fn from_name(name: &str) -> $crate::__private::core::option::Option<Self> {
                let $from_name0 = name;
                $from_name
            }

            /// Whether all bits in this flags value are unset.
            #[inline]
            pub const fn is_empty(&self) -> bool {
                let $is_empty0 = self;
                $is_empty
            }

            /// Whether all known bits in this flags value are set.
            #[inline]
            pub const fn is_all(&self) -> bool {
                let $is_all0 = self;
                $is_all
            }

            /// Whether any set bits in a source flags value are also set in a target flags value.
            #[inline]
            pub const fn intersects(&self, other: Self) -> bool {
                let $intersects0 = self;
                let $intersects1 = other;
                $intersects
            }

            /// Whether all set bits in a source flags value are also set in a target flags value.
            #[inline]
            pub const fn contains(&self, other: Self) -> bool {
                let $contains0 = self;
                let $contains1 = other;
                $contains
            }

            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            pub fn insert(&mut self, other: Self) {
                let $insert0 = self;
                let $insert1 = other;
                $insert
            }

            /// The intersection of a source flags value with the complement of a target flags value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `remove` won't truncate `other`, but the `!` operator will.
            #[inline]
            pub fn remove(&mut self, other: Self) {
                let $remove0 = self;
                let $remove1 = other;
                $remove
            }

            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            pub fn toggle(&mut self, other: Self) {
                let $toggle0 = self;
                let $toggle1 = other;
                $toggle
            }

            /// Call `insert` when `value` is `true` or `remove` when `value` is `false`.
            #[inline]
            pub fn set(&mut self, other: Self, value: bool) {
                let $set0 = self;
                let $set1 = other;
                let $set2 = value;
                $set
            }

            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn intersection(self, other: Self) -> Self {
                let $intersection0 = self;
                let $intersection1 = other;
                $intersection
            }

            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn union(self, other: Self) -> Self {
                let $union0 = self;
                let $union1 = other;
                $union
            }

            /// The intersection of a source flags value with the complement of a target flags value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            #[must_use]
            pub const fn difference(self, other: Self) -> Self {
                let $difference0 = self;
                let $difference1 = other;
                $difference
            }

            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn symmetric_difference(self, other: Self) -> Self {
                let $symmetric_difference0 = self;
                let $symmetric_difference1 = other;
                $symmetric_difference
            }

            /// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
            #[inline]
            #[must_use]
            pub const fn complement(self) -> Self {
                let $complement0 = self;
                $complement
            }
        }
    };
}

/// A macro that processed the input to `bitflags!` and shuffles attributes around
/// based on whether or not they're "expression-safe".
///
/// This macro is a token-tree muncher that works on 2 levels:
///
/// For each attribute, we explicitly match on its identifier, like `cfg` to determine
/// whether or not it should be considered expression-safe.
///
/// If you find yourself with an attribute that should be considered expression-safe
/// and isn't, it can be added here.
#[macro_export]
#[doc(hidden)]
macro_rules! __bitflags_expr_safe_attrs {
    // Entrypoint: Move all flags and all attributes into `unprocessed` lists
    // where they'll be munched one-at-a-time
    (
        $(#[$inner:ident $($args:tt)*])*
        { $e:expr }
    ) => {
        $crate::__bitflags_expr_safe_attrs! {
            expr: { $e },
            attrs: {
                // All attributes start here
                unprocessed: [$(#[$inner $($args)*])*],
                // Attributes that are safe on expressions go here
                processed: [],
            },
        }
    };
    // Process the next attribute on the current flag
    // `cfg`: The next flag should be propagated to expressions
    // NOTE: You can copy this rules block and replace `cfg` with
    // your attribute name that should be considered expression-safe
    (
        expr: { $e:expr },
            attrs: {
            unprocessed: [
                // cfg matched here
                #[cfg $($args:tt)*]
                $($attrs_rest:tt)*
            ],
            processed: [$($expr:tt)*],
        },
    ) => {
        $crate::__bitflags_expr_safe_attrs! {
            expr: { $e },
            attrs: {
                unprocessed: [
                    $($attrs_rest)*
                ],
                processed: [
                    $($expr)*
                    // cfg added here
                    #[cfg $($args)*]
                ],
            },
        }
    };
    // Process the next attribute on the current flag
    // `$other`: The next flag should not be propagated to expressions
    (
        expr: { $e:expr },
            attrs: {
            unprocessed: [
                // $other matched here
                #[$other:ident $($args:tt)*]
                $($attrs_rest:tt)*
            ],
            processed: [$($expr:tt)*],
        },
    ) => {
        $crate::__bitflags_expr_safe_attrs! {
            expr: { $e },
                attrs: {
                unprocessed: [
                    $($attrs_rest)*
                ],
                processed: [
                    // $other not added here
                    $($expr)*
                ],
            },
        }
    };
    // Once all attributes on all flags are processed, generate the actual code
    (
        expr: { $e:expr },
        attrs: {
            unprocessed: [],
            processed: [$(#[$expr:ident $($exprargs:tt)*])*],
        },
    ) => {
        $(#[$expr $($exprargs)*])*
        { $e }
    }
}

/// Implement a flag, which may be a wildcard `_`.
#[macro_export]
#[doc(hidden)]
macro_rules! __bitflags_flag {
    (
        {
            name: _,
            named: { $($named:tt)* },
            unnamed: { $($unnamed:tt)* },
        }
    ) => {
        $($unnamed)*
    };
    (
        {
            name: $Flag:ident,
            named: { $($named:tt)* },
            unnamed: { $($unnamed:tt)* },
        }
    ) => {
        $($named)*
    };
}

#[macro_use]
mod public;
#[macro_use]
mod internal;
#[macro_use]
mod external;

#[cfg(feature = "example_generated")]
pub mod example_generated;

#[cfg(test)]
mod tests;