cpal/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
//! # How to use cpal
//!
//! Here are some concepts cpal exposes:
//!
//! - A [`Host`] provides access to the available audio devices on the system.
//!   Some platforms have more than one host available, but every platform supported by CPAL has at
//!   least one [default_host] that is guaranteed to be available.
//! - A [`Device`] is an audio device that may have any number of input and
//!   output streams.
//! - A [`Stream`] is an open flow of audio data. Input streams allow you to
//!   receive audio data, output streams allow you to play audio data. You must choose which
//!   [Device] will run your stream before you can create one. Often, a default device can be
//!   retrieved via the [Host].
//!
//! The first step is to initialise the [`Host`]:
//!
//! ```
//! use cpal::traits::HostTrait;
//! let host = cpal::default_host();
//! ```
//!
//! Then choose an available [`Device`]. The easiest way is to use the default input or output
//! `Device` via the [`default_input_device()`] or [`default_output_device()`] methods on `host`.
//!
//! Alternatively, you can enumerate all the available devices with the [`devices()`] method.
//! Beware that the `default_*_device()` functions return an `Option<Device>` in case no device
//! is available for that stream type on the system.
//!
//! ```no_run
//! # use cpal::traits::HostTrait;
//! # let host = cpal::default_host();
//! let device = host.default_output_device().expect("no output device available");
//! ```
//!
//! Before we can create a stream, we must decide what the configuration of the audio stream is
//! going to be.    
//! You can query all the supported configurations with the
//! [`supported_input_configs()`] and [`supported_output_configs()`] methods.
//! These produce a list of [`SupportedStreamConfigRange`] structs which can later be turned into
//! actual [`SupportedStreamConfig`] structs.
//!
//! If you don't want to query the list of configs,
//! you can also build your own [`StreamConfig`] manually, but doing so could lead to an error when
//! building the stream if the config is not supported by the device.
//!
//! > **Note**: the `supported_input/output_configs()` methods
//! > could return an error for example if the device has been disconnected.
//!
//! ```no_run
//! use cpal::traits::{DeviceTrait, HostTrait};
//! # let host = cpal::default_host();
//! # let device = host.default_output_device().unwrap();
//! let mut supported_configs_range = device.supported_output_configs()
//!     .expect("error while querying configs");
//! let supported_config = supported_configs_range.next()
//!     .expect("no supported config?!")
//!     .with_max_sample_rate();
//! ```
//!
//! Now that we have everything for the stream, we are ready to create it from our selected device:
//!
//! ```no_run
//! use cpal::Data;
//! use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
//! # let host = cpal::default_host();
//! # let device = host.default_output_device().unwrap();
//! # let config = device.default_output_config().unwrap().into();
//! let stream = device.build_output_stream(
//!     &config,
//!     move |data: &mut [f32], _: &cpal::OutputCallbackInfo| {
//!         // react to stream events and read or write stream data here.
//!     },
//!     move |err| {
//!         // react to errors here.
//!     },
//!     None // None=blocking, Some(Duration)=timeout
//! );
//! ```
//!
//! While the stream is running, the selected audio device will periodically call the data callback
//! that was passed to the function. The callback is passed an instance of either [`&Data` or
//! `&mut Data`](Data) depending on whether the stream is an input stream or output stream respectively.
//!
//! > **Note**: Creating and running a stream will *not* block the thread. On modern platforms, the
//! > given callback is called by a dedicated, high-priority thread responsible for delivering
//! > audio data to the system's audio device in a timely manner. On older platforms that only
//! > provide a blocking API (e.g. ALSA), CPAL will create a thread in order to consistently
//! > provide non-blocking behaviour (currently this is a thread per stream, but this may change to
//! > use a single thread for all streams). *If this is an issue for your platform or design,
//! > please share your issue and use-case with the CPAL team on the GitHub issue tracker for
//! > consideration.*
//!
//! In this example, we simply fill the given output buffer with silence.
//!
//! ```no_run
//! use cpal::{Data, Sample, SampleFormat, FromSample};
//! use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
//! # let host = cpal::default_host();
//! # let device = host.default_output_device().unwrap();
//! # let supported_config = device.default_output_config().unwrap();
//! let err_fn = |err| eprintln!("an error occurred on the output audio stream: {}", err);
//! let sample_format = supported_config.sample_format();
//! let config = supported_config.into();
//! let stream = match sample_format {
//!     SampleFormat::F32 => device.build_output_stream(&config, write_silence::<f32>, err_fn, None),
//!     SampleFormat::I16 => device.build_output_stream(&config, write_silence::<i16>, err_fn, None),
//!     SampleFormat::U16 => device.build_output_stream(&config, write_silence::<u16>, err_fn, None),
//!     sample_format => panic!("Unsupported sample format '{sample_format}'")
//! }.unwrap();
//!
//! fn write_silence<T: Sample>(data: &mut [T], _: &cpal::OutputCallbackInfo) {
//!     for sample in data.iter_mut() {
//!         *sample = Sample::EQUILIBRIUM;
//!     }
//! }
//! ```
//!
//! Not all platforms automatically run the stream upon creation. To ensure the stream has started,
//! we can use [`Stream::play`](traits::StreamTrait::play).
//!
//! ```no_run
//! # use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
//! # let host = cpal::default_host();
//! # let device = host.default_output_device().unwrap();
//! # let supported_config = device.default_output_config().unwrap();
//! # let sample_format = supported_config.sample_format();
//! # let config = supported_config.into();
//! # let data_fn = move |_data: &mut cpal::Data, _: &cpal::OutputCallbackInfo| {};
//! # let err_fn = move |_err| {};
//! # let stream = device.build_output_stream_raw(&config, sample_format, data_fn, err_fn, None).unwrap();
//! stream.play().unwrap();
//! ```
//!
//! Some devices support pausing the audio stream. This can be useful for saving energy in moments
//! of silence.
//!
//! ```no_run
//! # use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
//! # let host = cpal::default_host();
//! # let device = host.default_output_device().unwrap();
//! # let supported_config = device.default_output_config().unwrap();
//! # let sample_format = supported_config.sample_format();
//! # let config = supported_config.into();
//! # let data_fn = move |_data: &mut cpal::Data, _: &cpal::OutputCallbackInfo| {};
//! # let err_fn = move |_err| {};
//! # let stream = device.build_output_stream_raw(&config, sample_format, data_fn, err_fn, None).unwrap();
//! stream.pause().unwrap();
//! ```
//!
//! [`default_input_device()`]: traits::HostTrait::default_input_device
//! [`default_output_device()`]: traits::HostTrait::default_output_device
//! [`devices()`]: traits::HostTrait::devices
//! [`supported_input_configs()`]: traits::DeviceTrait::supported_input_configs
//! [`supported_output_configs()`]: traits::DeviceTrait::supported_output_configs

#![recursion_limit = "2048"]

// Extern crate declarations with `#[macro_use]` must unfortunately be at crate root.
#[cfg(target_os = "emscripten")]
#[macro_use]
extern crate wasm_bindgen;
#[cfg(target_os = "emscripten")]
extern crate js_sys;
#[cfg(target_os = "emscripten")]
extern crate web_sys;

pub use error::*;
pub use platform::{
    available_hosts, default_host, host_from_id, Device, Devices, Host, HostId, Stream,
    SupportedInputConfigs, SupportedOutputConfigs, ALL_HOSTS,
};
pub use samples_formats::{FromSample, Sample, SampleFormat, SizedSample, I24, I48, U24, U48};
use std::convert::TryInto;
use std::ops::{Div, Mul};
use std::time::Duration;
#[cfg(target_os = "emscripten")]
use wasm_bindgen::prelude::*;

mod error;
mod host;
pub mod platform;
mod samples_formats;
pub mod traits;

/// A host's device iterator yielding only *input* devices.
pub type InputDevices<I> = std::iter::Filter<I, fn(&<I as Iterator>::Item) -> bool>;

/// A host's device iterator yielding only *output* devices.
pub type OutputDevices<I> = std::iter::Filter<I, fn(&<I as Iterator>::Item) -> bool>;

/// Number of channels.
pub type ChannelCount = u16;

/// The number of samples processed per second for a single channel of audio.
#[cfg_attr(target_os = "emscripten", wasm_bindgen)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct SampleRate(pub u32);

impl<T> Mul<T> for SampleRate
where
    u32: Mul<T, Output = u32>,
{
    type Output = Self;
    fn mul(self, rhs: T) -> Self {
        SampleRate(self.0 * rhs)
    }
}

impl<T> Div<T> for SampleRate
where
    u32: Div<T, Output = u32>,
{
    type Output = Self;
    fn div(self, rhs: T) -> Self {
        SampleRate(self.0 / rhs)
    }
}

/// The desired number of frames for the hardware buffer.
pub type FrameCount = u32;

/// The buffer size used by the device.
///
/// [`Default`] is used when no specific buffer size is set and uses the default
/// behavior of the given host. Note, the default buffer size may be surprisingly
/// large, leading to latency issues. If low latency is desired, [`Fixed(FrameCount)`]
/// should be used in accordance with the [`SupportedBufferSize`] range produced by
/// the [`SupportedStreamConfig`] API.  
///
/// [`Default`]: BufferSize::Default
/// [`Fixed(FrameCount)`]: BufferSize::Fixed
/// [`SupportedStreamConfig`]: SupportedStreamConfig::buffer_size
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum BufferSize {
    Default,
    Fixed(FrameCount),
}

#[cfg(target_os = "emscripten")]
impl wasm_bindgen::describe::WasmDescribe for BufferSize {
    fn describe() {}
}

#[cfg(target_os = "emscripten")]
impl wasm_bindgen::convert::IntoWasmAbi for BufferSize {
    type Abi = Option<u32>;
    fn into_abi(self) -> Self::Abi {
        match self {
            Self::Default => None,
            Self::Fixed(fc) => Some(fc),
        }
        .into_abi()
    }
}

/// The set of parameters used to describe how to open a stream.
///
/// The sample format is omitted in favour of using a sample type.
#[cfg_attr(target_os = "emscripten", wasm_bindgen)]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct StreamConfig {
    pub channels: ChannelCount,
    pub sample_rate: SampleRate,
    pub buffer_size: BufferSize,
}

/// Describes the minimum and maximum supported buffer size for the device
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum SupportedBufferSize {
    Range {
        min: FrameCount,
        max: FrameCount,
    },
    /// In the case that the platform provides no way of getting the default
    /// buffersize before starting a stream.
    Unknown,
}

/// Describes a range of supported stream configurations, retrieved via the
/// [`Device::supported_input/output_configs`](traits::DeviceTrait#required-methods) method.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct SupportedStreamConfigRange {
    pub(crate) channels: ChannelCount,
    /// Minimum value for the samples rate of the supported formats.
    pub(crate) min_sample_rate: SampleRate,
    /// Maximum value for the samples rate of the supported formats.
    pub(crate) max_sample_rate: SampleRate,
    /// Buffersize ranges supported by the device
    pub(crate) buffer_size: SupportedBufferSize,
    /// Type of data expected by the device.
    pub(crate) sample_format: SampleFormat,
}

/// Describes a single supported stream configuration, retrieved via either a
/// [`SupportedStreamConfigRange`] instance or one of the
/// [`Device::default_input/output_config`](traits::DeviceTrait#required-methods) methods.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SupportedStreamConfig {
    channels: ChannelCount,
    sample_rate: SampleRate,
    buffer_size: SupportedBufferSize,
    sample_format: SampleFormat,
}

/// A buffer of dynamically typed audio data, passed to raw stream callbacks.
///
/// Raw input stream callbacks receive `&Data`, while raw output stream callbacks expect `&mut
/// Data`.
#[cfg_attr(target_os = "emscripten", wasm_bindgen)]
#[derive(Debug)]
pub struct Data {
    data: *mut (),
    len: usize,
    sample_format: SampleFormat,
}

/// A monotonic time instance associated with a stream, retrieved from either:
///
/// 1. A timestamp provided to the stream's underlying audio data callback or
/// 2. The same time source used to generate timestamps for a stream's underlying audio data
///    callback.
///
/// `StreamInstant` represents a duration since some unspecified origin occurring either before
/// or equal to the moment the stream from which it was created begins.
///
/// ## Host `StreamInstant` Sources
///
/// | Host | Source |
/// | ---- | ------ |
/// | alsa | `snd_pcm_status_get_htstamp` |
/// | coreaudio | `mach_absolute_time` |
/// | wasapi | `QueryPerformanceCounter` |
/// | asio | `timeGetTime` |
/// | emscripten | `AudioContext.getOutputTimestamp` |
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct StreamInstant {
    secs: i64,
    nanos: u32,
}

/// A timestamp associated with a call to an input stream's data callback.
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct InputStreamTimestamp {
    /// The instant the stream's data callback was invoked.
    pub callback: StreamInstant,
    /// The instant that data was captured from the device.
    ///
    /// E.g. The instant data was read from an ADC.
    pub capture: StreamInstant,
}

/// A timestamp associated with a call to an output stream's data callback.
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct OutputStreamTimestamp {
    /// The instant the stream's data callback was invoked.
    pub callback: StreamInstant,
    /// The predicted instant that data written will be delivered to the device for playback.
    ///
    /// E.g. The instant data will be played by a DAC.
    pub playback: StreamInstant,
}

/// Information relevant to a single call to the user's input stream data callback.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InputCallbackInfo {
    timestamp: InputStreamTimestamp,
}

/// Information relevant to a single call to the user's output stream data callback.
#[cfg_attr(target_os = "emscripten", wasm_bindgen)]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct OutputCallbackInfo {
    timestamp: OutputStreamTimestamp,
}

impl SupportedStreamConfig {
    pub fn new(
        channels: ChannelCount,
        sample_rate: SampleRate,
        buffer_size: SupportedBufferSize,
        sample_format: SampleFormat,
    ) -> Self {
        Self {
            channels,
            sample_rate,
            buffer_size,
            sample_format,
        }
    }

    pub fn channels(&self) -> ChannelCount {
        self.channels
    }

    pub fn sample_rate(&self) -> SampleRate {
        self.sample_rate
    }

    pub fn buffer_size(&self) -> &SupportedBufferSize {
        &self.buffer_size
    }

    pub fn sample_format(&self) -> SampleFormat {
        self.sample_format
    }

    pub fn config(&self) -> StreamConfig {
        StreamConfig {
            channels: self.channels,
            sample_rate: self.sample_rate,
            buffer_size: BufferSize::Default,
        }
    }
}

impl StreamInstant {
    /// The amount of time elapsed from another instant to this one.
    ///
    /// Returns `None` if `earlier` is later than self.
    pub fn duration_since(&self, earlier: &Self) -> Option<Duration> {
        if self < earlier {
            None
        } else {
            (self.as_nanos() - earlier.as_nanos())
                .try_into()
                .ok()
                .map(Duration::from_nanos)
        }
    }

    /// Returns the instant in time after the given duration has passed.
    ///
    /// Returns `None` if the resulting instant would exceed the bounds of the underlying data
    /// structure.
    pub fn add(&self, duration: Duration) -> Option<Self> {
        self.as_nanos()
            .checked_add(duration.as_nanos() as i128)
            .and_then(Self::from_nanos_i128)
    }

    /// Returns the instant in time one `duration` ago.
    ///
    /// Returns `None` if the resulting instant would underflow. As a result, it is important to
    /// consider that on some platforms the [`StreamInstant`] may begin at `0` from the moment the
    /// source stream is created.
    pub fn sub(&self, duration: Duration) -> Option<Self> {
        self.as_nanos()
            .checked_sub(duration.as_nanos() as i128)
            .and_then(Self::from_nanos_i128)
    }

    fn as_nanos(&self) -> i128 {
        (self.secs as i128 * 1_000_000_000) + self.nanos as i128
    }

    #[allow(dead_code)]
    fn from_nanos(nanos: i64) -> Self {
        let secs = nanos / 1_000_000_000;
        let subsec_nanos = nanos - secs * 1_000_000_000;
        Self::new(secs, subsec_nanos as u32)
    }

    #[allow(dead_code)]
    fn from_nanos_i128(nanos: i128) -> Option<Self> {
        let secs = nanos / 1_000_000_000;
        if secs > i64::MAX as i128 || secs < i64::MIN as i128 {
            None
        } else {
            let subsec_nanos = nanos - secs * 1_000_000_000;
            debug_assert!(subsec_nanos < u32::MAX as i128);
            Some(Self::new(secs as i64, subsec_nanos as u32))
        }
    }

    #[allow(dead_code)]
    fn from_secs_f64(secs: f64) -> crate::StreamInstant {
        let s = secs.floor() as i64;
        let ns = ((secs - s as f64) * 1_000_000_000.0) as u32;
        Self::new(s, ns)
    }

    fn new(secs: i64, nanos: u32) -> Self {
        StreamInstant { secs, nanos }
    }
}

impl InputCallbackInfo {
    /// The timestamp associated with the call to an input stream's data callback.
    pub fn timestamp(&self) -> InputStreamTimestamp {
        self.timestamp
    }
}

impl OutputCallbackInfo {
    /// The timestamp associated with the call to an output stream's data callback.
    pub fn timestamp(&self) -> OutputStreamTimestamp {
        self.timestamp
    }
}

#[allow(clippy::len_without_is_empty)]
impl Data {
    // Internal constructor for host implementations to use.
    //
    // The following requirements must be met in order for the safety of `Data`'s public API.
    //
    // - The `data` pointer must point to the first sample in the slice containing all samples.
    // - The `len` must describe the length of the buffer as a number of samples in the expected
    //   format specified via the `sample_format` argument.
    // - The `sample_format` must correctly represent the underlying sample data delivered/expected
    //   by the stream.
    pub(crate) unsafe fn from_parts(
        data: *mut (),
        len: usize,
        sample_format: SampleFormat,
    ) -> Self {
        Data {
            data,
            len,
            sample_format,
        }
    }

    /// The sample format of the internal audio data.
    pub fn sample_format(&self) -> SampleFormat {
        self.sample_format
    }

    /// The full length of the buffer in samples.
    ///
    /// The returned length is the same length as the slice of type `T` that would be returned via
    /// [`as_slice`](Self::as_slice) given a sample type that matches the inner sample format.
    pub fn len(&self) -> usize {
        self.len
    }

    /// The raw slice of memory representing the underlying audio data as a slice of bytes.
    ///
    /// It is up to the user to interpret the slice of memory based on [`Data::sample_format`].
    pub fn bytes(&self) -> &[u8] {
        let len = self.len * self.sample_format.sample_size();
        // The safety of this block relies on correct construction of the `Data` instance.
        // See the unsafe `from_parts` constructor for these requirements.
        unsafe { std::slice::from_raw_parts(self.data as *const u8, len) }
    }

    /// The raw slice of memory representing the underlying audio data as a slice of bytes.
    ///
    /// It is up to the user to interpret the slice of memory based on [`Data::sample_format`].
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        let len = self.len * self.sample_format.sample_size();
        // The safety of this block relies on correct construction of the `Data` instance. See
        // the unsafe `from_parts` constructor for these requirements.
        unsafe { std::slice::from_raw_parts_mut(self.data as *mut u8, len) }
    }

    /// Access the data as a slice of sample type `T`.
    ///
    /// Returns `None` if the sample type does not match the expected sample format.
    pub fn as_slice<T>(&self) -> Option<&[T]>
    where
        T: SizedSample,
    {
        if T::FORMAT == self.sample_format {
            // The safety of this block relies on correct construction of the `Data` instance. See
            // the unsafe `from_parts` constructor for these requirements.
            unsafe { Some(std::slice::from_raw_parts(self.data as *const T, self.len)) }
        } else {
            None
        }
    }

    /// Access the data as a slice of sample type `T`.
    ///
    /// Returns `None` if the sample type does not match the expected sample format.
    pub fn as_slice_mut<T>(&mut self) -> Option<&mut [T]>
    where
        T: SizedSample,
    {
        if T::FORMAT == self.sample_format {
            // The safety of this block relies on correct construction of the `Data` instance. See
            // the unsafe `from_parts` constructor for these requirements.
            unsafe {
                Some(std::slice::from_raw_parts_mut(
                    self.data as *mut T,
                    self.len,
                ))
            }
        } else {
            None
        }
    }
}

impl SupportedStreamConfigRange {
    pub fn new(
        channels: ChannelCount,
        min_sample_rate: SampleRate,
        max_sample_rate: SampleRate,
        buffer_size: SupportedBufferSize,
        sample_format: SampleFormat,
    ) -> Self {
        Self {
            channels,
            min_sample_rate,
            max_sample_rate,
            buffer_size,
            sample_format,
        }
    }

    pub fn channels(&self) -> ChannelCount {
        self.channels
    }

    pub fn min_sample_rate(&self) -> SampleRate {
        self.min_sample_rate
    }

    pub fn max_sample_rate(&self) -> SampleRate {
        self.max_sample_rate
    }

    pub fn buffer_size(&self) -> &SupportedBufferSize {
        &self.buffer_size
    }

    pub fn sample_format(&self) -> SampleFormat {
        self.sample_format
    }

    /// Retrieve a [`SupportedStreamConfig`] with the given sample rate and buffer size.
    ///
    /// # Panics
    ///
    /// Panics if the given `sample_rate` is outside the range specified within
    /// this [`SupportedStreamConfigRange`] instance. For a non-panicking
    /// variant, use [`try_with_sample_rate`](#method.try_with_sample_rate).
    pub fn with_sample_rate(self, sample_rate: SampleRate) -> SupportedStreamConfig {
        self.try_with_sample_rate(sample_rate)
            .expect("sample rate out of range")
    }

    /// Retrieve a [`SupportedStreamConfig`] with the given sample rate and buffer size.
    ///
    /// Returns `None` if the given sample rate is outside the range specified
    /// within this [`SupportedStreamConfigRange`] instance.
    pub fn try_with_sample_rate(self, sample_rate: SampleRate) -> Option<SupportedStreamConfig> {
        if self.min_sample_rate <= sample_rate && sample_rate <= self.max_sample_rate {
            Some(SupportedStreamConfig {
                channels: self.channels,
                sample_rate,
                sample_format: self.sample_format,
                buffer_size: self.buffer_size,
            })
        } else {
            None
        }
    }

    /// Turns this [`SupportedStreamConfigRange`] into a [`SupportedStreamConfig`] corresponding to the maximum samples rate.
    #[inline]
    pub fn with_max_sample_rate(self) -> SupportedStreamConfig {
        SupportedStreamConfig {
            channels: self.channels,
            sample_rate: self.max_sample_rate,
            sample_format: self.sample_format,
            buffer_size: self.buffer_size,
        }
    }

    /// A comparison function which compares two [`SupportedStreamConfigRange`]s in terms of their priority of
    /// use as a default stream format.
    ///
    /// Some backends do not provide a default stream format for their audio devices. In these
    /// cases, CPAL attempts to decide on a reasonable default format for the user. To do this we
    /// use the "greatest" of all supported stream formats when compared with this method.
    ///
    /// SupportedStreamConfigs are prioritised by the following heuristics:
    ///
    /// **Channels**:
    ///
    /// - Stereo
    /// - Mono
    /// - Max available channels
    ///
    /// **Sample format**:
    /// - f32
    /// - i16
    /// - u16
    ///
    /// **Sample rate**:
    ///
    /// - 44100 (cd quality)
    /// - Max sample rate
    pub fn cmp_default_heuristics(&self, other: &Self) -> std::cmp::Ordering {
        use std::cmp::Ordering::Equal;
        use SampleFormat::{F32, I16, U16};

        let cmp_stereo = (self.channels == 2).cmp(&(other.channels == 2));
        if cmp_stereo != Equal {
            return cmp_stereo;
        }

        let cmp_mono = (self.channels == 1).cmp(&(other.channels == 1));
        if cmp_mono != Equal {
            return cmp_mono;
        }

        let cmp_channels = self.channels.cmp(&other.channels);
        if cmp_channels != Equal {
            return cmp_channels;
        }

        let cmp_f32 = (self.sample_format == F32).cmp(&(other.sample_format == F32));
        if cmp_f32 != Equal {
            return cmp_f32;
        }

        let cmp_i16 = (self.sample_format == I16).cmp(&(other.sample_format == I16));
        if cmp_i16 != Equal {
            return cmp_i16;
        }

        let cmp_u16 = (self.sample_format == U16).cmp(&(other.sample_format == U16));
        if cmp_u16 != Equal {
            return cmp_u16;
        }

        const HZ_44100: SampleRate = SampleRate(44_100);
        let r44100_in_self = self.min_sample_rate <= HZ_44100 && HZ_44100 <= self.max_sample_rate;
        let r44100_in_other =
            other.min_sample_rate <= HZ_44100 && HZ_44100 <= other.max_sample_rate;
        let cmp_r44100 = r44100_in_self.cmp(&r44100_in_other);
        if cmp_r44100 != Equal {
            return cmp_r44100;
        }

        self.max_sample_rate.cmp(&other.max_sample_rate)
    }
}

#[test]
fn test_cmp_default_heuristics() {
    let mut formats = [
        SupportedStreamConfigRange {
            buffer_size: SupportedBufferSize::Range { min: 256, max: 512 },
            channels: 2,
            min_sample_rate: SampleRate(1),
            max_sample_rate: SampleRate(96000),
            sample_format: SampleFormat::F32,
        },
        SupportedStreamConfigRange {
            buffer_size: SupportedBufferSize::Range { min: 256, max: 512 },
            channels: 1,
            min_sample_rate: SampleRate(1),
            max_sample_rate: SampleRate(96000),
            sample_format: SampleFormat::F32,
        },
        SupportedStreamConfigRange {
            buffer_size: SupportedBufferSize::Range { min: 256, max: 512 },
            channels: 2,
            min_sample_rate: SampleRate(1),
            max_sample_rate: SampleRate(96000),
            sample_format: SampleFormat::I16,
        },
        SupportedStreamConfigRange {
            buffer_size: SupportedBufferSize::Range { min: 256, max: 512 },
            channels: 2,
            min_sample_rate: SampleRate(1),
            max_sample_rate: SampleRate(96000),
            sample_format: SampleFormat::U16,
        },
        SupportedStreamConfigRange {
            buffer_size: SupportedBufferSize::Range { min: 256, max: 512 },
            channels: 2,
            min_sample_rate: SampleRate(1),
            max_sample_rate: SampleRate(22050),
            sample_format: SampleFormat::F32,
        },
    ];

    formats.sort_by(|a, b| a.cmp_default_heuristics(b));

    // lowest-priority first:
    assert_eq!(formats[0].sample_format(), SampleFormat::F32);
    assert_eq!(formats[0].min_sample_rate(), SampleRate(1));
    assert_eq!(formats[0].max_sample_rate(), SampleRate(96000));
    assert_eq!(formats[0].channels(), 1);

    assert_eq!(formats[1].sample_format(), SampleFormat::U16);
    assert_eq!(formats[1].min_sample_rate(), SampleRate(1));
    assert_eq!(formats[1].max_sample_rate(), SampleRate(96000));
    assert_eq!(formats[1].channels(), 2);

    assert_eq!(formats[2].sample_format(), SampleFormat::I16);
    assert_eq!(formats[2].min_sample_rate(), SampleRate(1));
    assert_eq!(formats[2].max_sample_rate(), SampleRate(96000));
    assert_eq!(formats[2].channels(), 2);

    assert_eq!(formats[3].sample_format(), SampleFormat::F32);
    assert_eq!(formats[3].min_sample_rate(), SampleRate(1));
    assert_eq!(formats[3].max_sample_rate(), SampleRate(22050));
    assert_eq!(formats[3].channels(), 2);

    assert_eq!(formats[4].sample_format(), SampleFormat::F32);
    assert_eq!(formats[4].min_sample_rate(), SampleRate(1));
    assert_eq!(formats[4].max_sample_rate(), SampleRate(96000));
    assert_eq!(formats[4].channels(), 2);
}

impl From<SupportedStreamConfig> for StreamConfig {
    fn from(conf: SupportedStreamConfig) -> Self {
        conf.config()
    }
}

// If a backend does not provide an API for retrieving supported formats, we query it with a bunch
// of commonly used rates. This is always the case for wasapi and is sometimes the case for alsa.
//
// If a rate you desire is missing from this list, feel free to add it!
#[cfg(target_os = "windows")]
const COMMON_SAMPLE_RATES: &[SampleRate] = &[
    SampleRate(5512),
    SampleRate(8000),
    SampleRate(11025),
    SampleRate(16000),
    SampleRate(22050),
    SampleRate(32000),
    SampleRate(44100),
    SampleRate(48000),
    SampleRate(64000),
    SampleRate(88200),
    SampleRate(96000),
    SampleRate(176400),
    SampleRate(192000),
];

#[test]
fn test_stream_instant() {
    let a = StreamInstant::new(2, 0);
    let b = StreamInstant::new(-2, 0);
    let min = StreamInstant::new(i64::MIN, 0);
    let max = StreamInstant::new(i64::MAX, 0);
    assert_eq!(
        a.sub(Duration::from_secs(1)),
        Some(StreamInstant::new(1, 0))
    );
    assert_eq!(
        a.sub(Duration::from_secs(2)),
        Some(StreamInstant::new(0, 0))
    );
    assert_eq!(
        a.sub(Duration::from_secs(3)),
        Some(StreamInstant::new(-1, 0))
    );
    assert_eq!(min.sub(Duration::from_secs(1)), None);
    assert_eq!(
        b.add(Duration::from_secs(1)),
        Some(StreamInstant::new(-1, 0))
    );
    assert_eq!(
        b.add(Duration::from_secs(2)),
        Some(StreamInstant::new(0, 0))
    );
    assert_eq!(
        b.add(Duration::from_secs(3)),
        Some(StreamInstant::new(1, 0))
    );
    assert_eq!(max.add(Duration::from_secs(1)), None);
}