bindgen/ir/analysis/sizedness.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
//! Determining the sizedness of types (as base classes and otherwise).
use super::{
generate_dependencies, ConstrainResult, HasVtable, MonotoneFramework,
};
use crate::ir::context::{BindgenContext, TypeId};
use crate::ir::item::IsOpaque;
use crate::ir::traversal::EdgeKind;
use crate::ir::ty::TypeKind;
use crate::{Entry, HashMap};
use std::{cmp, ops};
/// The result of the `Sizedness` analysis for an individual item.
///
/// This is a chain lattice of the form:
///
/// ```ignore
/// NonZeroSized
/// |
/// DependsOnTypeParam
/// |
/// ZeroSized
/// ```
///
/// We initially assume that all types are `ZeroSized` and then update our
/// understanding as we learn more about each type.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum SizednessResult {
/// The type is zero-sized.
///
/// This means that if it is a C++ type, and is not being used as a base
/// member, then we must add an `_address` byte to enforce the
/// unique-address-per-distinct-object-instance rule.
ZeroSized,
/// Whether this type is zero-sized or not depends on whether a type
/// parameter is zero-sized or not.
///
/// For example, given these definitions:
///
/// ```c++
/// template<class T>
/// class Flongo : public T {};
///
/// class Empty {};
///
/// class NonEmpty { int x; };
/// ```
///
/// Then `Flongo<Empty>` is zero-sized, and needs an `_address` byte
/// inserted, while `Flongo<NonEmpty>` is *not* zero-sized, and should *not*
/// have an `_address` byte inserted.
///
/// We don't properly handle this situation correctly right now:
/// https://github.com/rust-lang/rust-bindgen/issues/586
DependsOnTypeParam,
/// Has some size that is known to be greater than zero. That doesn't mean
/// it has a static size, but it is not zero sized for sure. In other words,
/// it might contain an incomplete array or some other dynamically sized
/// type.
NonZeroSized,
}
impl Default for SizednessResult {
fn default() -> Self {
SizednessResult::ZeroSized
}
}
impl SizednessResult {
/// Take the least upper bound of `self` and `rhs`.
pub fn join(self, rhs: Self) -> Self {
cmp::max(self, rhs)
}
}
impl ops::BitOr for SizednessResult {
type Output = Self;
fn bitor(self, rhs: SizednessResult) -> Self::Output {
self.join(rhs)
}
}
impl ops::BitOrAssign for SizednessResult {
fn bitor_assign(&mut self, rhs: SizednessResult) {
*self = self.join(rhs)
}
}
/// An analysis that computes the sizedness of all types.
///
/// * For types with known sizes -- for example pointers, scalars, etc... --
/// they are assigned `NonZeroSized`.
///
/// * For compound structure types with one or more fields, they are assigned
/// `NonZeroSized`.
///
/// * For compound structure types without any fields, the results of the bases
/// are `join`ed.
///
/// * For type parameters, `DependsOnTypeParam` is assigned.
#[derive(Debug)]
pub struct SizednessAnalysis<'ctx> {
ctx: &'ctx BindgenContext,
dependencies: HashMap<TypeId, Vec<TypeId>>,
// Incremental results of the analysis. Missing entries are implicitly
// considered `ZeroSized`.
sized: HashMap<TypeId, SizednessResult>,
}
impl<'ctx> SizednessAnalysis<'ctx> {
fn consider_edge(kind: EdgeKind) -> bool {
// These are the only edges that can affect whether a type is
// zero-sized or not.
matches!(
kind,
EdgeKind::TemplateArgument |
EdgeKind::TemplateParameterDefinition |
EdgeKind::TemplateDeclaration |
EdgeKind::TypeReference |
EdgeKind::BaseMember |
EdgeKind::Field
)
}
/// Insert an incremental result, and return whether this updated our
/// knowledge of types and we should continue the analysis.
fn insert(
&mut self,
id: TypeId,
result: SizednessResult,
) -> ConstrainResult {
trace!("inserting {:?} for {:?}", result, id);
if let SizednessResult::ZeroSized = result {
return ConstrainResult::Same;
}
match self.sized.entry(id) {
Entry::Occupied(mut entry) => {
if *entry.get() < result {
entry.insert(result);
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
Entry::Vacant(entry) => {
entry.insert(result);
ConstrainResult::Changed
}
}
}
fn forward(&mut self, from: TypeId, to: TypeId) -> ConstrainResult {
match self.sized.get(&from).cloned() {
None => ConstrainResult::Same,
Some(r) => self.insert(to, r),
}
}
}
impl<'ctx> MonotoneFramework for SizednessAnalysis<'ctx> {
type Node = TypeId;
type Extra = &'ctx BindgenContext;
type Output = HashMap<TypeId, SizednessResult>;
fn new(ctx: &'ctx BindgenContext) -> SizednessAnalysis<'ctx> {
let dependencies = generate_dependencies(ctx, Self::consider_edge)
.into_iter()
.filter_map(|(id, sub_ids)| {
id.as_type_id(ctx).map(|id| {
(
id,
sub_ids
.into_iter()
.filter_map(|s| s.as_type_id(ctx))
.collect::<Vec<_>>(),
)
})
})
.collect();
let sized = HashMap::default();
SizednessAnalysis {
ctx,
dependencies,
sized,
}
}
fn initial_worklist(&self) -> Vec<TypeId> {
self.ctx
.allowlisted_items()
.iter()
.cloned()
.filter_map(|id| id.as_type_id(self.ctx))
.collect()
}
fn constrain(&mut self, id: TypeId) -> ConstrainResult {
trace!("constrain {:?}", id);
if let Some(SizednessResult::NonZeroSized) =
self.sized.get(&id).cloned()
{
trace!(" already know it is not zero-sized");
return ConstrainResult::Same;
}
if id.has_vtable_ptr(self.ctx) {
trace!(" has an explicit vtable pointer, therefore is not zero-sized");
return self.insert(id, SizednessResult::NonZeroSized);
}
let ty = self.ctx.resolve_type(id);
if id.is_opaque(self.ctx, &()) {
trace!(" type is opaque; checking layout...");
let result =
ty.layout(self.ctx).map_or(SizednessResult::ZeroSized, |l| {
if l.size == 0 {
trace!(" ...layout has size == 0");
SizednessResult::ZeroSized
} else {
trace!(" ...layout has size > 0");
SizednessResult::NonZeroSized
}
});
return self.insert(id, result);
}
match *ty.kind() {
TypeKind::Void => {
trace!(" void is zero-sized");
self.insert(id, SizednessResult::ZeroSized)
}
TypeKind::TypeParam => {
trace!(
" type params sizedness depends on what they're \
instantiated as"
);
self.insert(id, SizednessResult::DependsOnTypeParam)
}
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Function(..) |
TypeKind::Enum(..) |
TypeKind::Reference(..) |
TypeKind::NullPtr |
TypeKind::ObjCId |
TypeKind::ObjCSel |
TypeKind::Pointer(..) => {
trace!(" {:?} is known not to be zero-sized", ty.kind());
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::ObjCInterface(..) => {
trace!(" obj-c interfaces always have at least the `isa` pointer");
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) |
TypeKind::BlockPointer(t) |
TypeKind::ResolvedTypeRef(t) => {
trace!(" aliases and type refs forward to their inner type");
self.forward(t, id)
}
TypeKind::TemplateInstantiation(ref inst) => {
trace!(
" template instantiations are zero-sized if their \
definition is zero-sized"
);
self.forward(inst.template_definition(), id)
}
TypeKind::Array(_, 0) => {
trace!(" arrays of zero elements are zero-sized");
self.insert(id, SizednessResult::ZeroSized)
}
TypeKind::Array(..) => {
trace!(" arrays of > 0 elements are not zero-sized");
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::Vector(..) => {
trace!(" vectors are not zero-sized");
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::Comp(ref info) => {
trace!(" comp considers its own fields and bases");
if !info.fields().is_empty() {
return self.insert(id, SizednessResult::NonZeroSized);
}
let result = info
.base_members()
.iter()
.filter_map(|base| self.sized.get(&base.ty))
.fold(SizednessResult::ZeroSized, |a, b| a.join(*b));
self.insert(id, result)
}
TypeKind::Opaque => {
unreachable!("covered by the .is_opaque() check above")
}
TypeKind::UnresolvedTypeRef(..) => {
unreachable!("Should have been resolved after parsing!");
}
}
}
fn each_depending_on<F>(&self, id: TypeId, mut f: F)
where
F: FnMut(TypeId),
{
if let Some(edges) = self.dependencies.get(&id) {
for ty in edges {
trace!("enqueue {:?} into worklist", ty);
f(*ty);
}
}
}
}
impl<'ctx> From<SizednessAnalysis<'ctx>> for HashMap<TypeId, SizednessResult> {
fn from(analysis: SizednessAnalysis<'ctx>) -> Self {
// We let the lack of an entry mean "ZeroSized" to save space.
extra_assert!(analysis
.sized
.values()
.all(|v| { *v != SizednessResult::ZeroSized }));
analysis.sized
}
}
/// A convenience trait for querying whether some type or id is sized.
///
/// This is not for _computing_ whether the thing is sized, it is for looking up
/// the results of the `Sizedness` analysis's computations for a specific thing.
pub trait Sizedness {
/// Get the sizedness of this type.
fn sizedness(&self, ctx: &BindgenContext) -> SizednessResult;
/// Is the sizedness for this type `SizednessResult::ZeroSized`?
fn is_zero_sized(&self, ctx: &BindgenContext) -> bool {
self.sizedness(ctx) == SizednessResult::ZeroSized
}
}