mesh_loader/utils/float/slow.rs
1//! Slow, fallback algorithm for cases the Eisel-Lemire algorithm cannot round.
2
3use super::{
4 common::BiasedFp,
5 decimal::{parse_decimal, Decimal},
6 float::RawFloat,
7};
8
9/// Parse the significant digits and biased, binary exponent of a float.
10///
11/// This is a fallback algorithm that uses a big-integer representation
12/// of the float, and therefore is considerably slower than faster
13/// approximations. However, it will always determine how to round
14/// the significant digits to the nearest machine float, allowing
15/// use to handle near half-way cases.
16///
17/// Near half-way cases are halfway between two consecutive machine floats.
18/// For example, the float `16777217.0` has a bitwise representation of
19/// `100000000000000000000000 1`. Rounding to a single-precision float,
20/// the trailing `1` is truncated. Using round-nearest, tie-even, any
21/// value above `16777217.0` must be rounded up to `16777218.0`, while
22/// any value before or equal to `16777217.0` must be rounded down
23/// to `16777216.0`. These near-halfway conversions therefore may require
24/// a large number of digits to unambiguously determine how to round.
25///
26/// The algorithms described here are based on "Processing Long Numbers Quickly",
27/// available here: <https://arxiv.org/pdf/2101.11408.pdf#section.11>.
28pub(crate) fn parse_long_mantissa<F: RawFloat>(s: &[u8]) -> BiasedFp {
29 const MAX_SHIFT: usize = 60;
30 const NUM_POWERS: usize = 19;
31 static POWERS: [u8; 19] = [
32 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59,
33 ];
34
35 let get_shift = |n| {
36 if n < NUM_POWERS {
37 POWERS[n] as usize
38 } else {
39 MAX_SHIFT
40 }
41 };
42
43 let fp_zero = BiasedFp::zero_pow2(0);
44 let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER);
45
46 let mut d = parse_decimal(s);
47
48 // Short-circuit if the value can only be a literal 0 or infinity.
49 if d.num_digits == 0 || d.decimal_point < -324 {
50 return fp_zero;
51 } else if d.decimal_point >= 310 {
52 return fp_inf;
53 }
54 let mut exp2 = 0_i32;
55 // Shift right toward (1/2 ... 1].
56 while d.decimal_point > 0 {
57 let n = d.decimal_point as usize;
58 let shift = get_shift(n);
59 d.right_shift(shift);
60 if d.decimal_point < -Decimal::DECIMAL_POINT_RANGE {
61 return fp_zero;
62 }
63 exp2 += shift as i32;
64 }
65 // Shift left toward (1/2 ... 1].
66 while d.decimal_point <= 0 {
67 let shift = if d.decimal_point == 0 {
68 match d.digits[0] {
69 digit if digit >= 5 => break,
70 0 | 1 => 2,
71 _ => 1,
72 }
73 } else {
74 get_shift((-d.decimal_point) as usize)
75 };
76 d.left_shift(shift);
77 if d.decimal_point > Decimal::DECIMAL_POINT_RANGE {
78 return fp_inf;
79 }
80 exp2 -= shift as i32;
81 }
82 // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
83 exp2 -= 1;
84 while (F::MINIMUM_EXPONENT + 1) > exp2 {
85 let mut n = ((F::MINIMUM_EXPONENT + 1) - exp2) as usize;
86 if n > MAX_SHIFT {
87 n = MAX_SHIFT;
88 }
89 d.right_shift(n);
90 exp2 += n as i32;
91 }
92 if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
93 return fp_inf;
94 }
95 // Shift the decimal to the hidden bit, and then round the value
96 // to get the high mantissa+1 bits.
97 d.left_shift(F::MANTISSA_EXPLICIT_BITS + 1);
98 let mut mantissa = d.round();
99 if mantissa >= (1_u64 << (F::MANTISSA_EXPLICIT_BITS + 1)) {
100 // Rounding up overflowed to the carry bit, need to
101 // shift back to the hidden bit.
102 d.right_shift(1);
103 exp2 += 1;
104 mantissa = d.round();
105 if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
106 return fp_inf;
107 }
108 }
109 let mut power2 = exp2 - F::MINIMUM_EXPONENT;
110 if mantissa < (1_u64 << F::MANTISSA_EXPLICIT_BITS) {
111 power2 -= 1;
112 }
113 // Zero out all the bits above the explicit mantissa bits.
114 mantissa &= (1_u64 << F::MANTISSA_EXPLICIT_BITS) - 1;
115 BiasedFp {
116 f: mantissa,
117 e: power2,
118 }
119}