ncollide3d/query/algorithms/cso_point.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
use crate::math::{Isometry, Point, Vector};
use crate::shape::SupportMap;
use na::{RealField, Unit};
use std::ops::Sub;
/// A point of a Configuration-Space Obstacle.
///
/// A Configuration-Space Obstacle (CSO) is the result of the
/// Minkowski Difference of two solids. In other words, each of its
/// points correspond to the difference of two point, each belonging
/// to a different solid.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct CSOPoint<N: RealField + Copy> {
/// The point on the CSO. This is equal to `self.orig1 - self.orig2`, unless this CSOPoint
/// has been translated with self.translate.
pub point: Point<N>,
/// The original point on the first shape used to compute `self.point`.
pub orig1: Point<N>,
/// The original point on the second shape used to compute `self.point`.
pub orig2: Point<N>,
}
impl<N: RealField + Copy> CSOPoint<N> {
/// Initializes a CSO point with `orig1 - orig2`.
pub fn new(orig1: Point<N>, orig2: Point<N>) -> Self {
let point = Point::from(orig1 - orig2);
Self::new_with_point(point, orig1, orig2)
}
/// Initializes a CSO point with all information provided.
///
/// It is assumed, but not checked, that `point == orig1 - orig2`.
pub fn new_with_point(point: Point<N>, orig1: Point<N>, orig2: Point<N>) -> Self {
CSOPoint {
point,
orig1,
orig2,
}
}
/// Initializes a CSO point where both original points are equal.
pub fn single_point(point: Point<N>) -> Self {
Self::new_with_point(point, point, Point::origin())
}
/// CSO point where all components are set to zero.
pub fn origin() -> Self {
CSOPoint::new(Point::origin(), Point::origin())
}
/// Computes the support point of the CSO of `g1` and `g2` toward the unit direction `dir`.
pub fn from_shapes_toward<G1: ?Sized, G2: ?Sized>(
m1: &Isometry<N>,
g1: &G1,
m2: &Isometry<N>,
g2: &G2,
dir: &Unit<Vector<N>>,
) -> Self
where
G1: SupportMap<N>,
G2: SupportMap<N>,
{
let sp1 = g1.support_point_toward(m1, dir);
let sp2 = g2.support_point_toward(m2, &-*dir);
CSOPoint::new(sp1, sp2)
}
/// Computes the support point of the CSO of `g1` and `g2` toward the direction `dir`.
pub fn from_shapes<G1: ?Sized, G2: ?Sized>(
m1: &Isometry<N>,
g1: &G1,
m2: &Isometry<N>,
g2: &G2,
dir: &Vector<N>,
) -> Self
where
G1: SupportMap<N>,
G2: SupportMap<N>,
{
let sp1 = g1.support_point(m1, dir);
let sp2 = g2.support_point(m2, &-*dir);
CSOPoint::new(sp1, sp2)
}
/// Translate the CSO point.
pub fn translate(&self, dir: &Vector<N>) -> Self {
CSOPoint::new_with_point(self.point + dir, self.orig1, self.orig2)
}
/// Translate in-place the CSO point.
pub fn translate_mut(&mut self, dir: &Vector<N>) {
self.point += dir;
}
}
impl<N: RealField + Copy> Sub<CSOPoint<N>> for CSOPoint<N> {
type Output = Vector<N>;
#[inline]
fn sub(self, rhs: CSOPoint<N>) -> Vector<N> {
self.point - rhs.point
}
}