ncollide3d/partitioning/
bvt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//! A read-only Bounding Volume Tree.

use crate::bounding_volume::BoundingVolume;
use crate::math::{Point, DIM};
use crate::partitioning::BVH;
use crate::utils;
use simba::scalar::RealField;
use std::collections::VecDeque;
use std::iter;
use std::usize;

/// A Bounding Volume Tree.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct BVT<T, BV> {
    root: BVTNodeId,
    internals: Vec<BVTInternal<BV>>,
    leaves: Vec<BVTLeaf<T, BV>>,
    // This will be filled only when at least one
    // deformation occurred to avoid memory usage
    // that are not needed in the general case.
    deformation_timestamp: usize,
    deformation_infos: Vec<BVTDeformationInfo>,
    // Infos for leaves are stored starting at the index self.internals.len().
    parents_to_update: VecDeque<usize>,
}

/// The identifier of a BVT node.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
pub enum BVTNodeId {
    /// Identifier of an internal node.
    Internal(usize),
    /// Identifier of a leaf node.
    Leaf(usize),
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
struct BVTInternal<BV> {
    bounding_volume: BV,
    right: BVTNodeId,
    left: BVTNodeId,
}

/// A leaf of the BVT.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct BVTLeaf<T, BV> {
    bounding_volume: BV,
    data: T,
}

impl<T, BV> BVTLeaf<T, BV> {
    /// The bounding volume stored on this leaf.
    #[inline]
    pub fn bounding_volume(&self) -> &BV {
        &self.bounding_volume
    }

    /// The user-data stored on this leaf.
    #[inline]
    pub fn data(&self) -> &T {
        &self.data
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
struct BVTDeformationInfo {
    parent: usize,
    timestamp: usize,
}

/// Result of a binary partition.
pub enum BinaryPartition<T, BV> {
    /// Result of the partitioning of one element.
    Part(T),
    /// Result of the partitioning of several elements.
    Parts(Vec<(T, BV)>, Vec<(T, BV)>),
}

impl<T, BV> BVT<T, BV> {
    /// Builds a bounding volume tree using the specified partitioning function.
    #[deprecated(note = "please use `from_partitioning` instead")]
    pub fn new_with_partitioning<F: FnMut(usize, Vec<(T, BV)>) -> (BV, BinaryPartition<T, BV>)>(
        elements: Vec<(T, BV)>,
        partitioning: &mut F,
    ) -> BVT<T, BV> {
        Self::from_partitioning(elements, partitioning)
    }

    // FIXME: add higher level constructors ?
    /// Builds a bounding volume tree using the specified partitioning function.
    pub fn from_partitioning(
        elements: Vec<(T, BV)>,
        partitioning: &mut impl FnMut(usize, Vec<(T, BV)>) -> (BV, BinaryPartition<T, BV>),
    ) -> BVT<T, BV> {
        if elements.len() == 0 {
            BVT {
                root: BVTNodeId::Leaf(0),
                internals: Vec::new(),
                leaves: Vec::new(),
                deformation_timestamp: 1,
                deformation_infos: Vec::new(),
                parents_to_update: VecDeque::new(),
            }
        } else {
            let mut internals = Vec::new();
            let mut leaves = Vec::new();
            let root =
                Self::_from_partitioning(0, elements, &mut internals, &mut leaves, partitioning);
            internals.shrink_to_fit();
            leaves.shrink_to_fit();

            BVT {
                root,
                internals,
                leaves,
                deformation_timestamp: 1,
                deformation_infos: Vec::new(),
                parents_to_update: VecDeque::new(),
            }
        }
    }

    /// The set of leaves on this BVT.
    #[inline]
    pub fn leaves(&self) -> &[BVTLeaf<T, BV>] {
        &self.leaves
    }

    /// Referenceto the i-th leaf of this BVT.
    #[inline]
    pub fn leaf(&self, i: usize) -> &BVTLeaf<T, BV> {
        &self.leaves[i]
    }

    /// Reference to the bounding volume of the tree root.
    pub fn root_bounding_volume(&self) -> Option<&BV> {
        if self.leaves.is_empty() {
            return None;
        }

        match self.root {
            BVTNodeId::Leaf(i) => Some(&self.leaves[i].bounding_volume),
            BVTNodeId::Internal(i) => Some(&self.internals[i].bounding_volume),
        }
    }

    /// Set the bounding volume of the i-th leaf.
    ///
    /// If `refit_now` is `true`, the bounding volumes of all the ancestors of the
    /// modifiad leaf will be updated as well to enclose the new leaf bounding volume.
    /// If `refit_now` is `false`, no ancestor update will be performed until the
    /// `.refit()` method is called. This is useful to refit the tree only once after
    /// several leaf bounding volume modifications.
    pub fn set_leaf_bounding_volume<N: RealField + Copy>(
        &mut self,
        i: usize,
        bv: BV,
        refit_now: bool,
    ) where
        BV: BoundingVolume<N>,
    {
        self.init_deformation_infos();
        self.leaves[i].bounding_volume = bv;

        if refit_now {
            let mut curr = self.deformation_infos[self.internals.len() + i].parent;

            while curr != usize::max_value() {
                let new_bv = match (self.internals[curr].left, self.internals[curr].right) {
                    (BVTNodeId::Internal(i), BVTNodeId::Internal(j)) => self.internals[i]
                        .bounding_volume
                        .merged(&self.internals[j].bounding_volume),
                    (BVTNodeId::Internal(i), BVTNodeId::Leaf(j)) => self.internals[i]
                        .bounding_volume
                        .merged(&self.leaves[j].bounding_volume),
                    (BVTNodeId::Leaf(i), BVTNodeId::Internal(j)) => self.leaves[i]
                        .bounding_volume
                        .merged(&self.internals[j].bounding_volume),
                    (BVTNodeId::Leaf(i), BVTNodeId::Leaf(j)) => self.leaves[i]
                        .bounding_volume
                        .merged(&self.leaves[j].bounding_volume),
                };
                self.internals[curr].bounding_volume = new_bv;
                curr = self.deformation_infos[curr].parent;
            }
        } else {
            if self.leaves.len() != 1 {
                self.parents_to_update
                    .push_back(self.deformation_infos[self.internals.len() + i].parent)
            }
        }
    }

    /// Refits the bounding volumes so that all node of the BVT have boundin volumes that enclose their children.
    ///
    /// This must be called to ensure the BVT is in a valid state after several calls to
    /// `.set_leaf_bounding_volume(_, _, false)`.
    /// Every bounding volume created during this update will be enlarged by a margin of `margin`.
    /// The larger this margin here, the looser will the resulting AABB will be, but the less frequent
    /// future updates will be necessary.
    /// Setting a margin equal to 0.0 is allowed.
    pub fn refit<N: RealField + Copy>(&mut self, margin: N)
    where
        BV: BoundingVolume<N>,
    {
        assert!(margin >= N::zero(), "Cannot set a negative margin.");

        self.deformation_timestamp += 1;

        while let Some(curr) = self.parents_to_update.pop_front() {
            let infos = &mut self.deformation_infos[curr];
            if infos.timestamp < self.deformation_timestamp {
                // This node has not been updated yet.
                infos.timestamp = self.deformation_timestamp;

                let mut new_bv = match (self.internals[curr].left, self.internals[curr].right) {
                    (BVTNodeId::Internal(i), BVTNodeId::Internal(j)) => self.internals[i]
                        .bounding_volume
                        .merged(&self.internals[j].bounding_volume),
                    (BVTNodeId::Internal(i), BVTNodeId::Leaf(j)) => self.internals[i]
                        .bounding_volume
                        .merged(&self.leaves[j].bounding_volume),
                    (BVTNodeId::Leaf(i), BVTNodeId::Internal(j)) => self.leaves[i]
                        .bounding_volume
                        .merged(&self.internals[j].bounding_volume),
                    (BVTNodeId::Leaf(i), BVTNodeId::Leaf(j)) => self.leaves[i]
                        .bounding_volume
                        .merged(&self.leaves[j].bounding_volume),
                };

                if !self.internals[curr].bounding_volume.contains(&new_bv) {
                    if !margin.is_zero() {
                        new_bv.loosen(margin)
                    }

                    self.internals[curr].bounding_volume = new_bv;

                    if infos.parent != usize::max_value() {
                        // Push the parent if it is not the root.
                        self.parents_to_update.push_back(infos.parent);
                    }
                }
            }
        }
    }

    fn init_deformation_infos(&mut self) {
        if self.deformation_infos.is_empty() {
            self.deformation_infos = iter::repeat(BVTDeformationInfo {
                parent: usize::max_value(),
                timestamp: 0,
            })
            .take(self.internals.len() + self.leaves.len())
            .collect();

            for (i, internal) in self.internals.iter().enumerate() {
                match internal.left {
                    BVTNodeId::Internal(j) => self.deformation_infos[j].parent = i,
                    BVTNodeId::Leaf(j) => {
                        self.deformation_infos[self.internals.len() + j].parent = i
                    }
                }

                match internal.right {
                    BVTNodeId::Internal(j) => self.deformation_infos[j].parent = i,
                    BVTNodeId::Leaf(j) => {
                        self.deformation_infos[self.internals.len() + j].parent = i
                    }
                }
            }
        }
    }
}

impl<T, BV> BVT<T, BV> {
    /// Creates a balanced `BVT`.
    pub fn new_balanced<N>(leaves: Vec<(T, BV)>) -> BVT<T, BV>
    where
        N: RealField + Copy,
        BV: BoundingVolume<N> + Clone,
    {
        BVT::from_partitioning(leaves, &mut Self::median_partitioning)
    }

    /// Construction function for a kdree to be used with `BVT::from_partitioning`.
    pub fn median_partitioning_with_centers<N, F: FnMut(&T, &BV) -> Point<N>>(
        depth: usize,
        leaves: Vec<(T, BV)>,
        center: &mut F,
    ) -> (BV, BinaryPartition<T, BV>)
    where
        N: RealField + Copy,
        BV: BoundingVolume<N> + Clone,
    {
        if leaves.len() == 0 {
            panic!("Cannot build a tree without leaves.");
        } else if leaves.len() == 1 {
            let (b, bv) = leaves.into_iter().next().unwrap();
            (bv, BinaryPartition::Part(b))
        } else {
            let sep_axis = depth % DIM;

            // compute the median along sep_axis
            let mut median = Vec::new();

            for l in leaves.iter() {
                let c = (*center)(&l.0, &l.1);
                median.push(c[sep_axis]);
            }

            let median = utils::median(&mut median[..]);

            // build the partitions
            let mut right = Vec::new();
            let mut left = Vec::new();
            let mut bounding_bounding_volume = leaves[0].1.clone();

            let mut insert_left = false;

            for (b, bv) in leaves.into_iter() {
                bounding_bounding_volume.merge(&bv);

                let pos = (*center)(&b, &bv)[sep_axis];

                if pos < median || (pos == median && insert_left) {
                    left.push((b, bv));
                    insert_left = false;
                } else {
                    right.push((b, bv));
                    insert_left = true;
                }
            }

            // XXX: hack to avoid degeneracies.
            if left.len() == 0 {
                left.push(right.pop().unwrap());
            } else if right.len() == 0 {
                right.push(left.pop().unwrap());
            }

            (
                bounding_bounding_volume,
                BinaryPartition::Parts(left, right),
            )
        }
    }

    /// Construction function for a kdree to be used with `BVT::from_partitioning`.
    pub fn median_partitioning<N>(
        depth: usize,
        leaves: Vec<(T, BV)>,
    ) -> (BV, BinaryPartition<T, BV>)
    where
        N: RealField + Copy,
        BV: BoundingVolume<N> + Clone,
    {
        Self::median_partitioning_with_centers(depth, leaves, &mut |_, bv| bv.center())
    }

    fn _from_partitioning<F: FnMut(usize, Vec<(T, BV)>) -> (BV, BinaryPartition<T, BV>)>(
        depth: usize,
        leaves: Vec<(T, BV)>,
        out_internals: &mut Vec<BVTInternal<BV>>,
        out_leaves: &mut Vec<BVTLeaf<T, BV>>,
        partitioning: &mut F,
    ) -> BVTNodeId {
        let (bv, partitions) = partitioning(depth, leaves);

        match partitions {
            BinaryPartition::Part(b) => {
                out_leaves.push(BVTLeaf {
                    bounding_volume: bv,
                    data: b,
                });
                BVTNodeId::Leaf(out_leaves.len() - 1)
            }
            BinaryPartition::Parts(left, right) => {
                let left = Self::_from_partitioning(
                    depth + 1,
                    left,
                    out_internals,
                    out_leaves,
                    partitioning,
                );
                let right = Self::_from_partitioning(
                    depth + 1,
                    right,
                    out_internals,
                    out_leaves,
                    partitioning,
                );
                out_internals.push(BVTInternal {
                    bounding_volume: bv,
                    left,
                    right,
                });
                BVTNodeId::Internal(out_internals.len() - 1)
            }
        }
    }
}

impl<'a, T, BV> BVH<T, BV> for BVT<T, BV> {
    type Node = BVTNodeId;

    fn root(&self) -> Option<Self::Node> {
        if self.leaves.len() != 0 {
            Some(self.root)
        } else {
            None
        }
    }

    fn num_children(&self, node: Self::Node) -> usize {
        match node {
            BVTNodeId::Internal(_) => 2,
            BVTNodeId::Leaf(_) => 0,
        }
    }

    fn child(&self, i: usize, node: Self::Node) -> Self::Node {
        match node {
            BVTNodeId::Internal(node_id) => {
                if i == 0 {
                    self.internals[node_id].left
                } else {
                    self.internals[node_id].right
                }
            }
            BVTNodeId::Leaf(_) => panic!("DBVT child index out of bounds."),
        }
    }

    fn content(&self, node: Self::Node) -> (&BV, Option<&T>) {
        match node {
            BVTNodeId::Internal(i) => {
                let node = &self.internals[i];
                (&node.bounding_volume, None)
            }
            BVTNodeId::Leaf(i) => {
                let node = &self.leaves[i];
                (&node.bounding_volume, Some(&node.data))
            }
        }
    }
}