bindgen/ir/var.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
//! Intermediate representation of variables.
use super::super::codegen::MacroTypeVariation;
use super::context::{BindgenContext, TypeId};
use super::dot::DotAttributes;
use super::function::cursor_mangling;
use super::int::IntKind;
use super::item::Item;
use super::ty::{FloatKind, TypeKind};
use crate::callbacks::MacroParsingBehavior;
use crate::clang;
use crate::clang::ClangToken;
use crate::parse::{
ClangItemParser, ClangSubItemParser, ParseError, ParseResult,
};
use cexpr;
use std::io;
use std::num::Wrapping;
/// The type for a constant variable.
#[derive(Debug)]
pub enum VarType {
/// A boolean.
Bool(bool),
/// An integer.
Int(i64),
/// A floating point number.
Float(f64),
/// A character.
Char(u8),
/// A string, not necessarily well-formed utf-8.
String(Vec<u8>),
}
/// A `Var` is our intermediate representation of a variable.
#[derive(Debug)]
pub struct Var {
/// The name of the variable.
name: String,
/// The mangled name of the variable.
mangled_name: Option<String>,
/// The type of the variable.
ty: TypeId,
/// The value of the variable, that needs to be suitable for `ty`.
val: Option<VarType>,
/// Whether this variable is const.
is_const: bool,
}
impl Var {
/// Construct a new `Var`.
pub fn new(
name: String,
mangled_name: Option<String>,
ty: TypeId,
val: Option<VarType>,
is_const: bool,
) -> Var {
assert!(!name.is_empty());
Var {
name,
mangled_name,
ty,
val,
is_const,
}
}
/// Is this variable `const` qualified?
pub fn is_const(&self) -> bool {
self.is_const
}
/// The value of this constant variable, if any.
pub fn val(&self) -> Option<&VarType> {
self.val.as_ref()
}
/// Get this variable's type.
pub fn ty(&self) -> TypeId {
self.ty
}
/// Get this variable's name.
pub fn name(&self) -> &str {
&self.name
}
/// Get this variable's mangled name.
pub fn mangled_name(&self) -> Option<&str> {
self.mangled_name.as_deref()
}
}
impl DotAttributes for Var {
fn dot_attributes<W>(
&self,
_ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
if self.is_const {
writeln!(out, "<tr><td>const</td><td>true</td></tr>")?;
}
if let Some(ref mangled) = self.mangled_name {
writeln!(
out,
"<tr><td>mangled name</td><td>{}</td></tr>",
mangled
)?;
}
Ok(())
}
}
fn default_macro_constant_type(ctx: &BindgenContext, value: i64) -> IntKind {
if value < 0 ||
ctx.options().default_macro_constant_type ==
MacroTypeVariation::Signed
{
if value < i32::min_value() as i64 || value > i32::max_value() as i64 {
IntKind::I64
} else if !ctx.options().fit_macro_constants ||
value < i16::min_value() as i64 ||
value > i16::max_value() as i64
{
IntKind::I32
} else if value < i8::min_value() as i64 ||
value > i8::max_value() as i64
{
IntKind::I16
} else {
IntKind::I8
}
} else if value > u32::max_value() as i64 {
IntKind::U64
} else if !ctx.options().fit_macro_constants ||
value > u16::max_value() as i64
{
IntKind::U32
} else if value > u8::max_value() as i64 {
IntKind::U16
} else {
IntKind::U8
}
}
/// Parses tokens from a CXCursor_MacroDefinition pointing into a function-like
/// macro, and calls the func_macro callback.
fn handle_function_macro(
cursor: &clang::Cursor,
callbacks: &dyn crate::callbacks::ParseCallbacks,
) {
let is_closing_paren = |t: &ClangToken| {
// Test cheap token kind before comparing exact spellings.
t.kind == clang_sys::CXToken_Punctuation && t.spelling() == b")"
};
let tokens: Vec<_> = cursor.tokens().iter().collect();
if let Some(boundary) = tokens.iter().position(is_closing_paren) {
let mut spelled = tokens.iter().map(ClangToken::spelling);
// Add 1, to convert index to length.
let left = spelled.by_ref().take(boundary + 1);
let left = left.collect::<Vec<_>>().concat();
if let Ok(left) = String::from_utf8(left) {
let right: Vec<_> = spelled.collect();
callbacks.func_macro(&left, &right);
}
}
}
impl ClangSubItemParser for Var {
fn parse(
cursor: clang::Cursor,
ctx: &mut BindgenContext,
) -> Result<ParseResult<Self>, ParseError> {
use cexpr::expr::EvalResult;
use cexpr::literal::CChar;
use clang_sys::*;
match cursor.kind() {
CXCursor_MacroDefinition => {
for callbacks in &ctx.options().parse_callbacks {
match callbacks.will_parse_macro(&cursor.spelling()) {
MacroParsingBehavior::Ignore => {
return Err(ParseError::Continue);
}
MacroParsingBehavior::Default => {}
}
if cursor.is_macro_function_like() {
handle_function_macro(&cursor, callbacks.as_ref());
// We handled the macro, skip macro processing below.
return Err(ParseError::Continue);
}
}
let value = parse_macro(ctx, &cursor);
let (id, value) = match value {
Some(v) => v,
None => return Err(ParseError::Continue),
};
assert!(!id.is_empty(), "Empty macro name?");
let previously_defined = ctx.parsed_macro(&id);
// NB: It's important to "note" the macro even if the result is
// not an integer, otherwise we might loose other kind of
// derived macros.
ctx.note_parsed_macro(id.clone(), value.clone());
if previously_defined {
let name = String::from_utf8(id).unwrap();
warn!("Duplicated macro definition: {}", name);
return Err(ParseError::Continue);
}
// NOTE: Unwrapping, here and above, is safe, because the
// identifier of a token comes straight from clang, and we
// enforce utf8 there, so we should have already panicked at
// this point.
let name = String::from_utf8(id).unwrap();
let (type_kind, val) = match value {
EvalResult::Invalid => return Err(ParseError::Continue),
EvalResult::Float(f) => {
(TypeKind::Float(FloatKind::Double), VarType::Float(f))
}
EvalResult::Char(c) => {
let c = match c {
CChar::Char(c) => {
assert_eq!(c.len_utf8(), 1);
c as u8
}
CChar::Raw(c) => {
assert!(c <= ::std::u8::MAX as u64);
c as u8
}
};
(TypeKind::Int(IntKind::U8), VarType::Char(c))
}
EvalResult::Str(val) => {
let char_ty = Item::builtin_type(
TypeKind::Int(IntKind::U8),
true,
ctx,
);
for callbacks in &ctx.options().parse_callbacks {
callbacks.str_macro(&name, &val);
}
(TypeKind::Pointer(char_ty), VarType::String(val))
}
EvalResult::Int(Wrapping(value)) => {
let kind = ctx
.options()
.last_callback(|c| c.int_macro(&name, value))
.unwrap_or_else(|| {
default_macro_constant_type(ctx, value)
});
(TypeKind::Int(kind), VarType::Int(value))
}
};
let ty = Item::builtin_type(type_kind, true, ctx);
Ok(ParseResult::New(
Var::new(name, None, ty, Some(val), true),
Some(cursor),
))
}
CXCursor_VarDecl => {
let name = cursor.spelling();
if name.is_empty() {
warn!("Empty constant name?");
return Err(ParseError::Continue);
}
let ty = cursor.cur_type();
// TODO(emilio): do we have to special-case constant arrays in
// some other places?
let is_const = ty.is_const() ||
([CXType_ConstantArray, CXType_IncompleteArray]
.contains(&ty.kind()) &&
ty.elem_type()
.map_or(false, |element| element.is_const()));
let ty = match Item::from_ty(&ty, cursor, None, ctx) {
Ok(ty) => ty,
Err(e) => {
assert!(
matches!(ty.kind(), CXType_Auto | CXType_Unexposed),
"Couldn't resolve constant type, and it \
wasn't an nondeductible auto type or unexposed \
type!"
);
return Err(e);
}
};
// Note: Ty might not be totally resolved yet, see
// tests/headers/inner_const.hpp
//
// That's fine because in that case we know it's not a literal.
let canonical_ty = ctx
.safe_resolve_type(ty)
.and_then(|t| t.safe_canonical_type(ctx));
let is_integer = canonical_ty.map_or(false, |t| t.is_integer());
let is_float = canonical_ty.map_or(false, |t| t.is_float());
// TODO: We could handle `char` more gracefully.
// TODO: Strings, though the lookup is a bit more hard (we need
// to look at the canonical type of the pointee too, and check
// is char, u8, or i8 I guess).
let value = if is_integer {
let kind = match *canonical_ty.unwrap().kind() {
TypeKind::Int(kind) => kind,
_ => unreachable!(),
};
let mut val = cursor.evaluate().and_then(|v| v.as_int());
if val.is_none() || !kind.signedness_matches(val.unwrap()) {
val = get_integer_literal_from_cursor(&cursor);
}
val.map(|val| {
if kind == IntKind::Bool {
VarType::Bool(val != 0)
} else {
VarType::Int(val)
}
})
} else if is_float {
cursor
.evaluate()
.and_then(|v| v.as_double())
.map(VarType::Float)
} else {
cursor
.evaluate()
.and_then(|v| v.as_literal_string())
.map(VarType::String)
};
let mangling = cursor_mangling(ctx, &cursor);
let var = Var::new(name, mangling, ty, value, is_const);
Ok(ParseResult::New(var, Some(cursor)))
}
_ => {
/* TODO */
Err(ParseError::Continue)
}
}
}
}
/// Try and parse a macro using all the macros parsed until now.
fn parse_macro(
ctx: &BindgenContext,
cursor: &clang::Cursor,
) -> Option<(Vec<u8>, cexpr::expr::EvalResult)> {
use cexpr::expr;
let cexpr_tokens = cursor.cexpr_tokens();
let parser = expr::IdentifierParser::new(ctx.parsed_macros());
match parser.macro_definition(&cexpr_tokens) {
Ok((_, (id, val))) => Some((id.into(), val)),
_ => None,
}
}
fn parse_int_literal_tokens(cursor: &clang::Cursor) -> Option<i64> {
use cexpr::expr;
use cexpr::expr::EvalResult;
let cexpr_tokens = cursor.cexpr_tokens();
// TODO(emilio): We can try to parse other kinds of literals.
match expr::expr(&cexpr_tokens) {
Ok((_, EvalResult::Int(Wrapping(val)))) => Some(val),
_ => None,
}
}
fn get_integer_literal_from_cursor(cursor: &clang::Cursor) -> Option<i64> {
use clang_sys::*;
let mut value = None;
cursor.visit(|c| {
match c.kind() {
CXCursor_IntegerLiteral | CXCursor_UnaryOperator => {
value = parse_int_literal_tokens(&c);
}
CXCursor_UnexposedExpr => {
value = get_integer_literal_from_cursor(&c);
}
_ => (),
}
if value.is_some() {
CXChildVisit_Break
} else {
CXChildVisit_Continue
}
});
value
}