k/joint/joint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
Copyright 2017 Takashi Ogura
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
use super::joint_type::*;
use super::range::*;
use super::velocity::*;
use crate::errors::*;
use na::{Isometry3, RealField, Translation3, UnitQuaternion};
use nalgebra as na;
use simba::scalar::SubsetOf;
use std::cell::RefCell;
use std::fmt::{self, Display};
/// Joint with type
#[derive(Debug, Clone)]
pub struct Joint<T: RealField> {
/// Name of this joint
pub name: String,
/// Type of this joint
pub joint_type: JointType<T>,
/// position (angle) of this joint
position: T,
/// velocity of this joint
velocity: T,
/// Limits of this joint
pub limits: Option<Range<T>>,
/// local origin transform of joint
origin: Isometry3<T>,
/// cache of world transform
world_transform_cache: RefCell<Option<Isometry3<T>>>,
/// cache of world velocity
world_velocity_cache: RefCell<Option<Velocity<T>>>,
}
impl<T> Joint<T>
where
T: RealField + SubsetOf<f64>,
{
/// Create new Joint with name and type
///
/// # Examples
///
/// ```
/// use nalgebra as na;
///
/// // create fixed joint
/// let fixed = k::Joint::<f32>::new("f0", k::JointType::Fixed);
/// assert!(fixed.joint_position().is_none());
///
/// // create rotational joint with Y-axis
/// let rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
/// assert_eq!(rot.joint_position().unwrap(), 0.0);
/// ```
///
pub fn new(name: &str, joint_type: JointType<T>) -> Joint<T> {
Joint {
name: name.to_string(),
joint_type,
position: T::zero(),
velocity: T::zero(),
limits: None,
origin: Isometry3::identity(),
world_transform_cache: RefCell::new(None),
world_velocity_cache: RefCell::new(None),
}
}
/// Set the position of the joint
///
/// It returns Err if it is out of the limits, or this is fixed joint.
///
/// # Examples
///
/// ```
/// use nalgebra as na;
///
/// // Create fixed joint
/// let mut fixed = k::Joint::<f32>::new("f0", k::JointType::Fixed);
/// // Set position to fixed joint always fails
/// assert!(fixed.set_joint_position(1.0).is_err());
///
/// // Create rotational joint with Y-axis
/// let mut rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
/// // As default, it has not limit
///
/// // Initial position is 0.0
/// assert_eq!(rot.joint_position().unwrap(), 0.0);
/// // If it has no limits, set_joint_position always succeeds.
/// rot.set_joint_position(0.2).unwrap();
/// assert_eq!(rot.joint_position().unwrap(), 0.2);
/// ```
///
pub fn set_joint_position(&mut self, position: T) -> Result<(), Error> {
if !self.is_movable() {
return Err(Error::SetToFixedError {
joint_name: self.name.to_string(),
});
}
if let Some(ref range) = self.limits {
if !range.is_valid(position.clone()) {
return Err(Error::OutOfLimitError {
joint_name: self.name.to_string(),
position: na::try_convert(position).unwrap_or_default(),
max_limit: na::try_convert(range.max.clone()).unwrap_or_default(),
min_limit: na::try_convert(range.min.clone()).unwrap_or_default(),
});
}
}
self.position = position;
self.clear_caches();
Ok(())
}
/// Set the clamped position of the joint
///
/// It refers to the joint limit and clamps the argument. This function does nothing if this is fixed joint.
///
/// # Examples
///
/// ```
/// use nalgebra as na;
///
/// // Create rotational joint with Y-axis
/// let mut rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
///
/// let limits = k::joint::Range::new(-1.0, 1.0);
/// rot.limits = Some(limits);
///
/// // Initial position is 0.0
/// assert_eq!(rot.joint_position().unwrap(), 0.0);
/// rot.set_joint_position_clamped(2.0);
/// assert_eq!(rot.joint_position().unwrap(), 1.0);
/// rot.set_joint_position_clamped(-2.0);
/// assert_eq!(rot.joint_position().unwrap(), -1.0);
/// ```
///
pub fn set_joint_position_clamped(&mut self, position: T) {
if !self.is_movable() {
return;
}
let position_clamped = if let Some(ref range) = self.limits {
range.clamp(position)
} else {
position
};
self.set_joint_position_unchecked(position_clamped);
}
pub fn set_joint_position_unchecked(&mut self, position: T) {
self.position = position;
self.clear_caches();
}
/// Returns the position (angle)
#[inline]
pub fn joint_position(&self) -> Option<T> {
match self.joint_type {
JointType::Fixed => None,
_ => Some(self.position.clone()),
}
}
#[inline]
pub fn origin(&self) -> &Isometry3<T> {
&self.origin
}
#[inline]
pub fn set_origin(&mut self, origin: Isometry3<T>) {
self.origin = origin;
self.clear_caches();
}
pub fn set_joint_velocity(&mut self, velocity: T) -> Result<(), Error> {
if let JointType::Fixed = self.joint_type {
return Err(Error::SetToFixedError {
joint_name: self.name.to_string(),
});
}
self.velocity = velocity;
self.world_velocity_cache.replace(None);
Ok(())
}
/// Returns the velocity
#[inline]
pub fn joint_velocity(&self) -> Option<T> {
match self.joint_type {
JointType::Fixed => None,
_ => Some(self.velocity.clone()),
}
}
/// Calculate and returns the transform of the end of this joint
///
/// # Examples
///
/// ```
/// use nalgebra as na;
///
/// // Create linear joint with X-axis
/// let mut lin = k::Joint::<f64>::new("l0", k::JointType::Linear { axis: na::Vector3::x_axis() });
/// assert_eq!(lin.local_transform().translation.vector.x, 0.0);
/// lin.set_joint_position(-1.0).unwrap();
/// assert_eq!(lin.local_transform().translation.vector.x, -1.0);
/// ```
///
pub fn local_transform(&self) -> Isometry3<T> {
let joint_transform = match &self.joint_type {
JointType::Fixed => Isometry3::identity(),
JointType::Rotational { axis } => Isometry3::from_parts(
Translation3::new(T::zero(), T::zero(), T::zero()),
UnitQuaternion::from_axis_angle(axis, self.position.clone()),
),
JointType::Linear { axis } => Isometry3::from_parts(
Translation3::from(axis.clone().into_inner() * self.position.clone()),
UnitQuaternion::identity(),
),
};
self.origin.clone() * joint_transform
}
#[inline]
pub(crate) fn set_world_transform(&self, world_transform: Isometry3<T>) {
self.world_transform_cache.replace(Some(world_transform));
}
#[inline]
pub(crate) fn set_world_velocity(&self, world_velocity: Velocity<T>) {
self.world_velocity_cache.replace(Some(world_velocity));
}
/// Get the result of forward kinematics
///
/// The value is updated by `Chain::update_transforms`
#[inline]
pub fn world_transform(&self) -> Option<Isometry3<T>> {
self.world_transform_cache.borrow().clone()
}
#[inline]
pub fn world_velocity(&self) -> Option<Velocity<T>> {
self.world_velocity_cache.borrow().clone()
}
#[inline]
pub fn is_movable(&self) -> bool {
!matches!(self.joint_type, JointType::Fixed)
}
/// Clear caches defined in the world coordinate
#[inline]
pub fn clear_caches(&self) {
self.world_transform_cache.replace(None);
self.world_velocity_cache.replace(None);
}
}
impl<T: RealField> Display for Joint<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{} {}", self.name, self.joint_type)
}
}