rouille/websocket/low_level.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
// Copyright (c) 2016 The Rouille developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
//! Low-level parsing of websocket frames.
//!
//! Usage:
//!
//! - Create a `StateMachine` with `StateMachine::new`.
//! - Whenever data is received on the socket, call `StateMachine::feed`.
//! - The returned iterator produces zero, one or multiple `Element` objects containing what was
//! received.
//! - For `Element::Data`, the `Data` object is an iterator over the decoded bytes.
//! - If `Element::Error` is produced, immediately end the connection.
//!
//! Glossary:
//!
//! - A websocket stream is made of multiple *messages*.
//! - Each message is made of one or more *frames*. See https://tools.ietf.org/html/rfc6455#section-5.4.
//! - Each frame can be received progressively, where each packet is an `Element` object (below).
/// A websocket element decoded from the data given to `StateMachine::feed`.
#[derive(Debug, PartialEq, Eq)]
pub enum Element<'a> {
/// A new frame has started.
FrameStart {
/// If true, this is the last frame of the message.
fin: bool,
/// Length of the frame in bytes.
length: u64,
/// Opcode. See https://tools.ietf.org/html/rfc6455#section-5.2.
opcode: u8,
},
/// Data was received as part of the current frame.
Data {
/// The decoded data. An iterator that produces `u8`s.
data: Data<'a>,
/// If true, this is the last packet in the frame.
last_in_frame: bool,
},
/// An error in the stream. The connection must be dropped ASAP.
Error {
/// A description of the error. Can or cannot be be returned to the client.
desc: &'static str,
},
}
/// Decoded data. Implements `Iterator<Item = u8>`.
#[derive(Debug, PartialEq, Eq)]
pub struct Data<'a> {
// Source data. Undecoded.
data: &'a [u8],
// Copy of the mask of the current frame.
mask: u32,
// Same as `StateMachineInner::InData::offset`. Updated at each iteration.
offset: u8,
}
/// A websocket state machine. Contains partial data.
pub struct StateMachine {
// Actual state.
inner: StateMachineInner,
// Contains the start of the header. Must be empty if `inner` is equal to `InData`.
buffer: Vec<u8>, // TODO: use SmallVec?
}
enum StateMachineInner {
// If `StateMachine::inner` is `InHeader`, then `buffer` contains the start of the header.
InHeader,
// If `StateMachine::inner` is `InData`, then `buffer` must be empty.
InData {
// Mask to decode the message.
mask: u32,
// Value between 0 and 3 that indicates the number of bytes between the start of the data
// and the next expected byte.
offset: u8,
// Number of bytes remaining in the frame.
remaining_len: u64,
},
}
impl StateMachine {
/// Initializes a new state machine for a new stream. Expects to see a new frame as the first
/// packet.
pub fn new() -> StateMachine {
StateMachine {
inner: StateMachineInner::InHeader,
buffer: Vec::with_capacity(14),
}
}
/// Feeds data to the state machine. Returns an iterator to the list of elements that were
/// received.
#[inline]
pub fn feed<'a>(&'a mut self, data: &'a [u8]) -> ElementsIter<'a> {
ElementsIter { state: self, data }
}
}
// Helpers for decoding masked big-endian byte sequences
// These could probably be replaced with something more robust like `nom` if we want to
// take the hit of adding another dependency.
fn read_u16_be<'a, T: Iterator<Item = &'a u8>>(input: &mut T) -> u16 {
let buf: [u8; 2] = [*input.next().unwrap(), *input.next().unwrap()];
u16::from_be_bytes(buf)
}
fn read_u32_be<'a, T: Iterator<Item = &'a u8>>(input: &mut T) -> u32 {
let buf: [u8; 4] = [
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
];
u32::from_be_bytes(buf)
}
fn read_u64_be<'a, T: Iterator<Item = &'a u8>>(input: &mut T) -> u64 {
let buf: [u8; 8] = [
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
*input.next().unwrap(),
];
u64::from_be_bytes(buf)
}
/// Iterator to the list of elements that were received.
pub struct ElementsIter<'a> {
state: &'a mut StateMachine,
data: &'a [u8],
}
impl<'a> Iterator for ElementsIter<'a> {
type Item = Element<'a>;
fn next(&mut self) -> Option<Element<'a>> {
if self.data.is_empty() {
return None;
}
match self.state.inner {
// First situation, we are in the header.
StateMachineInner::InHeader => {
// We need at least 6 bytes for a successful header. Otherwise we just return.
let total_buffered = self.state.buffer.len() + self.data.len();
if total_buffered < 6 {
self.state.buffer.extend_from_slice(self.data);
self.data = &[];
return None;
}
// Retrieve the first two bytes of the header.
let (first_byte, second_byte) = {
let mut mask_iter = self.state.buffer.iter().chain(self.data.iter());
let first_byte = *mask_iter.next().unwrap();
let second_byte = *mask_iter.next().unwrap();
(first_byte, second_byte)
};
// Reserved bits must be zero, otherwise error.
if (first_byte & 0x70) != 0 {
return Some(Element::Error {
desc: "Reserved bits must be zero",
});
}
// Client-to-server messages **must** be encoded.
if (second_byte & 0x80) == 0 {
return Some(Element::Error {
desc: "Client-to-server messages must be masked",
});
}
// Find the length of the frame and the mask.
let (length, mask) = match second_byte & 0x7f {
126 => {
if total_buffered < 8 {
self.state.buffer.extend_from_slice(self.data);
self.data = &[];
return None;
}
let mut mask_iter =
self.state.buffer.iter().chain(self.data.iter()).skip(2);
let length = read_u16_be(&mut mask_iter) as u64;
let mask = read_u32_be(&mut mask_iter);
(length, mask)
}
127 => {
if total_buffered < 14 {
self.state.buffer.extend_from_slice(self.data);
self.data = &[];
return None;
}
let mut mask_iter =
self.state.buffer.iter().chain(self.data.iter()).skip(2);
let length = {
let length = read_u64_be(&mut mask_iter);
// The most significant bit must be zero according to the specs.
if (length & 0x8000000000000000) != 0 {
return Some(Element::Error {
desc: "Most-significant bit of the length must be zero",
});
}
length
};
let mask = read_u32_be(&mut mask_iter);
(length, mask)
}
n => {
let mut mask_iter =
self.state.buffer.iter().chain(self.data.iter()).skip(2);
let mask = read_u32_be(&mut mask_iter);
(u64::from(n), mask)
}
};
// Builds a slice containing the start of the data.
let data_start = {
let data_start_off = match second_byte & 0x7f {
126 => 8,
127 => 14,
_ => 6,
};
assert!(self.state.buffer.len() < data_start_off);
&self.data[(data_start_off - self.state.buffer.len())..]
};
// Update ourselves for the next loop and return a FrameStart message.
self.data = data_start;
self.state.buffer.clear();
self.state.inner = StateMachineInner::InData {
mask,
remaining_len: length,
offset: 0,
};
Some(Element::FrameStart {
fin: (first_byte & 0x80) != 0,
length,
opcode: first_byte & 0xf,
})
}
// Second situation, we are in the message and we don't have enough data to finish the
// current frame.
StateMachineInner::InData {
mask,
ref mut remaining_len,
ref mut offset,
} if *remaining_len > self.data.len() as u64 => {
let data = Data {
data: self.data,
mask,
offset: *offset,
};
*offset += (self.data.len() % 4) as u8;
*offset %= 4;
*remaining_len -= self.data.len() as u64;
self.data = &[];
Some(Element::Data {
data,
last_in_frame: false,
})
}
// Third situation, we have enough data to finish the frame.
StateMachineInner::InData {
mask,
remaining_len,
offset,
} => {
debug_assert!(self.data.len() as u64 >= remaining_len);
let data = Data {
data: &self.data[0..remaining_len as usize],
mask,
offset,
};
self.data = &self.data[remaining_len as usize..];
self.state.inner = StateMachineInner::InHeader;
debug_assert!(self.state.buffer.is_empty());
Some(Element::Data {
data,
last_in_frame: true,
})
}
}
}
}
impl<'a> Iterator for Data<'a> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<u8> {
if self.data.is_empty() {
return None;
}
let byte = self.data[0];
let mask = ((self.mask >> ((3 - self.offset) * 8)) & 0xff) as u8;
let decoded = byte ^ mask;
self.data = &self.data[1..];
self.offset = (self.offset + 1) % 4;
Some(decoded)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let l = self.data.len();
(l, Some(l))
}
}
impl<'a> ExactSizeIterator for Data<'a> {}
#[cfg(test)]
mod tests {
use super::Element;
use super::StateMachine;
#[test]
fn basic() {
let mut machine = StateMachine::new();
let data = &[
0x81, 0x85, 0x37, 0xfa, 0x21, 0x3d, 0x7f, 0x9f, 0x4d, 0x51, 0x58,
];
let mut iter = machine.feed(data);
assert_eq!(
iter.next().unwrap(),
Element::FrameStart {
fin: true,
length: 5,
opcode: 1
}
);
match iter.next().unwrap() {
Element::Data {
data,
last_in_frame,
} => {
assert!(last_in_frame);
assert_eq!(data.collect::<Vec<_>>(), b"Hello");
}
_ => panic!(),
}
}
}