rouille/websocket/
low_level.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Copyright (c) 2016 The Rouille developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! Low-level parsing of websocket frames.
//!
//! Usage:
//!
//! - Create a `StateMachine` with `StateMachine::new`.
//! - Whenever data is received on the socket, call `StateMachine::feed`.
//! - The returned iterator produces zero, one or multiple `Element` objects containing what was
//!   received.
//! - For `Element::Data`, the `Data` object is an iterator over the decoded bytes.
//! - If `Element::Error` is produced, immediately end the connection.
//!
//! Glossary:
//!
//! - A websocket stream is made of multiple *messages*.
//! - Each message is made of one or more *frames*. See https://tools.ietf.org/html/rfc6455#section-5.4.
//! - Each frame can be received progressively, where each packet is an `Element` object (below).

/// A websocket element decoded from the data given to `StateMachine::feed`.
#[derive(Debug, PartialEq, Eq)]
pub enum Element<'a> {
    /// A new frame has started.
    FrameStart {
        /// If true, this is the last frame of the message.
        fin: bool,
        /// Length of the frame in bytes.
        length: u64,
        /// Opcode. See https://tools.ietf.org/html/rfc6455#section-5.2.
        opcode: u8,
    },

    /// Data was received as part of the current frame.
    Data {
        /// The decoded data. An iterator that produces `u8`s.
        data: Data<'a>,
        /// If true, this is the last packet in the frame.
        last_in_frame: bool,
    },

    /// An error in the stream. The connection must be dropped ASAP.
    Error {
        /// A description of the error. Can or cannot be be returned to the client.
        desc: &'static str,
    },
}

/// Decoded data. Implements `Iterator<Item = u8>`.
#[derive(Debug, PartialEq, Eq)]
pub struct Data<'a> {
    // Source data. Undecoded.
    data: &'a [u8],
    // Copy of the mask of the current frame.
    mask: u32,
    // Same as `StateMachineInner::InData::offset`. Updated at each iteration.
    offset: u8,
}

/// A websocket state machine. Contains partial data.
pub struct StateMachine {
    // Actual state.
    inner: StateMachineInner,
    // Contains the start of the header. Must be empty if `inner` is equal to `InData`.
    buffer: Vec<u8>, // TODO: use SmallVec?
}

enum StateMachineInner {
    // If `StateMachine::inner` is `InHeader`, then `buffer` contains the start of the header.
    InHeader,
    // If `StateMachine::inner` is `InData`, then `buffer` must be empty.
    InData {
        // Mask to decode the message.
        mask: u32,
        // Value between 0 and 3 that indicates the number of bytes between the start of the data
        // and the next expected byte.
        offset: u8,
        // Number of bytes remaining in the frame.
        remaining_len: u64,
    },
}

impl StateMachine {
    /// Initializes a new state machine for a new stream. Expects to see a new frame as the first
    /// packet.
    pub fn new() -> StateMachine {
        StateMachine {
            inner: StateMachineInner::InHeader,
            buffer: Vec::with_capacity(14),
        }
    }

    /// Feeds data to the state machine. Returns an iterator to the list of elements that were
    /// received.
    #[inline]
    pub fn feed<'a>(&'a mut self, data: &'a [u8]) -> ElementsIter<'a> {
        ElementsIter { state: self, data }
    }
}

// Helpers for decoding masked big-endian byte sequences
// These could probably be replaced with something more robust like `nom` if we want to
// take the hit of adding another dependency.
fn read_u16_be<'a, T: Iterator<Item = &'a u8>>(input: &mut T) -> u16 {
    let buf: [u8; 2] = [*input.next().unwrap(), *input.next().unwrap()];
    u16::from_be_bytes(buf)
}

fn read_u32_be<'a, T: Iterator<Item = &'a u8>>(input: &mut T) -> u32 {
    let buf: [u8; 4] = [
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
    ];
    u32::from_be_bytes(buf)
}

fn read_u64_be<'a, T: Iterator<Item = &'a u8>>(input: &mut T) -> u64 {
    let buf: [u8; 8] = [
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
        *input.next().unwrap(),
    ];
    u64::from_be_bytes(buf)
}

/// Iterator to the list of elements that were received.
pub struct ElementsIter<'a> {
    state: &'a mut StateMachine,
    data: &'a [u8],
}

impl<'a> Iterator for ElementsIter<'a> {
    type Item = Element<'a>;

    fn next(&mut self) -> Option<Element<'a>> {
        if self.data.is_empty() {
            return None;
        }

        match self.state.inner {
            // First situation, we are in the header.
            StateMachineInner::InHeader => {
                // We need at least 6 bytes for a successful header. Otherwise we just return.
                let total_buffered = self.state.buffer.len() + self.data.len();
                if total_buffered < 6 {
                    self.state.buffer.extend_from_slice(self.data);
                    self.data = &[];
                    return None;
                }

                // Retrieve the first two bytes of the header.
                let (first_byte, second_byte) = {
                    let mut mask_iter = self.state.buffer.iter().chain(self.data.iter());
                    let first_byte = *mask_iter.next().unwrap();
                    let second_byte = *mask_iter.next().unwrap();
                    (first_byte, second_byte)
                };

                // Reserved bits must be zero, otherwise error.
                if (first_byte & 0x70) != 0 {
                    return Some(Element::Error {
                        desc: "Reserved bits must be zero",
                    });
                }

                // Client-to-server messages **must** be encoded.
                if (second_byte & 0x80) == 0 {
                    return Some(Element::Error {
                        desc: "Client-to-server messages must be masked",
                    });
                }

                // Find the length of the frame and the mask.
                let (length, mask) = match second_byte & 0x7f {
                    126 => {
                        if total_buffered < 8 {
                            self.state.buffer.extend_from_slice(self.data);
                            self.data = &[];
                            return None;
                        }

                        let mut mask_iter =
                            self.state.buffer.iter().chain(self.data.iter()).skip(2);

                        let length = read_u16_be(&mut mask_iter) as u64;
                        let mask = read_u32_be(&mut mask_iter);
                        (length, mask)
                    }
                    127 => {
                        if total_buffered < 14 {
                            self.state.buffer.extend_from_slice(self.data);
                            self.data = &[];
                            return None;
                        }

                        let mut mask_iter =
                            self.state.buffer.iter().chain(self.data.iter()).skip(2);

                        let length = {
                            let length = read_u64_be(&mut mask_iter);
                            // The most significant bit must be zero according to the specs.
                            if (length & 0x8000000000000000) != 0 {
                                return Some(Element::Error {
                                    desc: "Most-significant bit of the length must be zero",
                                });
                            }
                            length
                        };

                        let mask = read_u32_be(&mut mask_iter);

                        (length, mask)
                    }
                    n => {
                        let mut mask_iter =
                            self.state.buffer.iter().chain(self.data.iter()).skip(2);

                        let mask = read_u32_be(&mut mask_iter);
                        (u64::from(n), mask)
                    }
                };

                // Builds a slice containing the start of the data.
                let data_start = {
                    let data_start_off = match second_byte & 0x7f {
                        126 => 8,
                        127 => 14,
                        _ => 6,
                    };

                    assert!(self.state.buffer.len() < data_start_off);
                    &self.data[(data_start_off - self.state.buffer.len())..]
                };

                // Update ourselves for the next loop and return a FrameStart message.
                self.data = data_start;
                self.state.buffer.clear();
                self.state.inner = StateMachineInner::InData {
                    mask,
                    remaining_len: length,
                    offset: 0,
                };
                Some(Element::FrameStart {
                    fin: (first_byte & 0x80) != 0,
                    length,
                    opcode: first_byte & 0xf,
                })
            }

            // Second situation, we are in the message and we don't have enough data to finish the
            // current frame.
            StateMachineInner::InData {
                mask,
                ref mut remaining_len,
                ref mut offset,
            } if *remaining_len > self.data.len() as u64 => {
                let data = Data {
                    data: self.data,
                    mask,
                    offset: *offset,
                };

                *offset += (self.data.len() % 4) as u8;
                *offset %= 4;
                *remaining_len -= self.data.len() as u64;

                self.data = &[];

                Some(Element::Data {
                    data,
                    last_in_frame: false,
                })
            }

            // Third situation, we have enough data to finish the frame.
            StateMachineInner::InData {
                mask,
                remaining_len,
                offset,
            } => {
                debug_assert!(self.data.len() as u64 >= remaining_len);

                let data = Data {
                    data: &self.data[0..remaining_len as usize],
                    mask,
                    offset,
                };

                self.data = &self.data[remaining_len as usize..];
                self.state.inner = StateMachineInner::InHeader;
                debug_assert!(self.state.buffer.is_empty());

                Some(Element::Data {
                    data,
                    last_in_frame: true,
                })
            }
        }
    }
}

impl<'a> Iterator for Data<'a> {
    type Item = u8;

    #[inline]
    fn next(&mut self) -> Option<u8> {
        if self.data.is_empty() {
            return None;
        }

        let byte = self.data[0];
        let mask = ((self.mask >> ((3 - self.offset) * 8)) & 0xff) as u8;
        let decoded = byte ^ mask;

        self.data = &self.data[1..];
        self.offset = (self.offset + 1) % 4;

        Some(decoded)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let l = self.data.len();
        (l, Some(l))
    }
}

impl<'a> ExactSizeIterator for Data<'a> {}

#[cfg(test)]
mod tests {
    use super::Element;
    use super::StateMachine;

    #[test]
    fn basic() {
        let mut machine = StateMachine::new();

        let data = &[
            0x81, 0x85, 0x37, 0xfa, 0x21, 0x3d, 0x7f, 0x9f, 0x4d, 0x51, 0x58,
        ];
        let mut iter = machine.feed(data);

        assert_eq!(
            iter.next().unwrap(),
            Element::FrameStart {
                fin: true,
                length: 5,
                opcode: 1
            }
        );

        match iter.next().unwrap() {
            Element::Data {
                data,
                last_in_frame,
            } => {
                assert!(last_in_frame);
                assert_eq!(data.collect::<Vec<_>>(), b"Hello");
            }
            _ => panic!(),
        }
    }
}