wide/
u32x8_.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
use super::*;

pick! {
  if #[cfg(target_feature="avx2")] {
    #[derive(Default, Clone, Copy, PartialEq, Eq)]
    #[repr(C, align(32))]
    pub struct u32x8 { pub(crate) avx2: m256i }
  } else {
    #[derive(Default, Clone, Copy, PartialEq, Eq)]
    #[repr(C, align(32))]
    pub struct u32x8 { pub(crate) a : u32x4, pub(crate) b : u32x4 }
  }
}

int_uint_consts!(u32, 8, u32x8, 256);

unsafe impl Zeroable for u32x8 {}
unsafe impl Pod for u32x8 {}

impl Add for u32x8 {
  type Output = Self;
  #[inline]
  #[must_use]
  fn add(self, rhs: Self) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: add_i32_m256i(self.avx2, rhs.avx2) }
      } else {
        Self {
          a : self.a.add(rhs.a),
          b : self.b.add(rhs.b),
        }
      }
    }
  }
}

impl Sub for u32x8 {
  type Output = Self;
  #[inline]
  #[must_use]
  fn sub(self, rhs: Self) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: sub_i32_m256i(self.avx2, rhs.avx2) }
      } else {
        Self {
          a : self.a.sub(rhs.a),
          b : self.b.sub(rhs.b),
        }
      }
    }
  }
}

impl Mul for u32x8 {
  type Output = Self;
  #[inline]
  #[must_use]
  fn mul(self, rhs: Self) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: mul_i32_keep_low_m256i(self.avx2, rhs.avx2) }
      } else {
        Self {
          a : self.a.mul(rhs.a),
          b : self.b.mul(rhs.b),
        }
      }
    }
  }
}

impl BitAnd for u32x8 {
  type Output = Self;
  #[inline]
  #[must_use]
  fn bitand(self, rhs: Self) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: bitand_m256i(self.avx2, rhs.avx2) }
      } else {
        Self {
          a : self.a.bitand(rhs.a),
          b : self.b.bitand(rhs.b),
        }
      }
    }
  }
}

impl BitOr for u32x8 {
  type Output = Self;
  #[inline]
  #[must_use]
  fn bitor(self, rhs: Self) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: bitor_m256i(self.avx2, rhs.avx2) }
      } else {
        Self {
          a : self.a.bitor(rhs.a),
          b : self.b.bitor(rhs.b),
        }
      }
    }
  }
}

impl BitXor for u32x8 {
  type Output = Self;
  #[inline]
  #[must_use]
  fn bitxor(self, rhs: Self) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: bitxor_m256i(self.avx2, rhs.avx2) }
      } else {
        Self {
          a : self.a.bitxor(rhs.a),
          b : self.b.bitxor(rhs.b),
        }
      }
    }
  }
}

impl From<u16x8> for u32x8 {
  /// widens and zero extends to u32x8
  #[inline]
  #[must_use]
  fn from(v: u16x8) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2:convert_to_i32_m256i_from_u16_m128i(v.sse) }
      } else if #[cfg(target_feature="sse2")] {
        Self {
          a: u32x4 { sse: shr_imm_u32_m128i::<16>( unpack_low_i16_m128i(v.sse, v.sse)) },
          b: u32x4 { sse: shr_imm_u32_m128i::<16>( unpack_high_i16_m128i(v.sse, v.sse)) },
        }
      } else {
        u32x8::new([
          u32::from(v.as_array_ref()[0]),
          u32::from(v.as_array_ref()[1]),
          u32::from(v.as_array_ref()[2]),
          u32::from(v.as_array_ref()[3]),
          u32::from(v.as_array_ref()[4]),
          u32::from(v.as_array_ref()[5]),
          u32::from(v.as_array_ref()[6]),
          u32::from(v.as_array_ref()[7]),
        ])
      }
    }
  }
}

macro_rules! impl_shl_t_for_u32x8 {
  ($($shift_type:ty),+ $(,)?) => {
    $(impl Shl<$shift_type> for u32x8 {
      type Output = Self;
      /// Shifts all lanes by the value given.
      #[inline]
      #[must_use]
      fn shl(self, rhs: $shift_type) -> Self::Output {
        pick! {
          if #[cfg(target_feature="avx2")] {
            let shift = cast([rhs as u64, 0]);
            Self { avx2: shl_all_u32_m256i(self.avx2, shift) }
          } else {
            Self {
              a : self.a.shl(rhs),
              b : self.b.shl(rhs),
            }
          }
        }
      }
    })+
  };
}
impl_shl_t_for_u32x8!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128);

macro_rules! impl_shr_t_for_u32x8 {
  ($($shift_type:ty),+ $(,)?) => {
    $(impl Shr<$shift_type> for u32x8 {
      type Output = Self;
      /// Shifts all lanes by the value given.
      #[inline]
      #[must_use]
      fn shr(self, rhs: $shift_type) -> Self::Output {
        pick! {
          if #[cfg(target_feature="avx2")] {
            let shift = cast([rhs as u64, 0]);
            Self { avx2: shr_all_u32_m256i(self.avx2, shift) }
          } else {
            Self {
              a : self.a.shr(rhs),
              b : self.b.shr(rhs),
            }
          }
        }
      }
    })+
  };
}

impl_shr_t_for_u32x8!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128);

/// Shifts lanes by the corresponding lane.
///
/// Bitwise shift-right; yields `self >> mask(rhs)`, where mask removes any
/// high-order bits of `rhs` that would cause the shift to exceed the bitwidth
/// of the type. (same as `wrapping_shr`)
impl Shr<u32x8> for u32x8 {
  type Output = Self;

  #[inline]
  #[must_use]
  fn shr(self, rhs: u32x8) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        // ensure same behavior as scalar wrapping_shr
        let shift_by = bitand_m256i(rhs.avx2, set_splat_i32_m256i(31));
        Self { avx2: shr_each_u32_m256i(self.avx2, shift_by ) }
      } else {
        Self {
          a : self.a.shr(rhs.a),
          b : self.b.shr(rhs.b),
        }
      }
    }
  }
}

/// Shifts lanes by the corresponding lane.
///
/// Bitwise shift-left; yields `self << mask(rhs)`, where mask removes any
/// high-order bits of `rhs` that would cause the shift to exceed the bitwidth
/// of the type. (same as `wrapping_shl`)
impl Shl<u32x8> for u32x8 {
  type Output = Self;

  #[inline]
  #[must_use]
  fn shl(self, rhs: u32x8) -> Self::Output {
    pick! {
      if #[cfg(target_feature="avx2")] {
        // ensure same behavior as scalar wrapping_shl
        let shift_by = bitand_m256i(rhs.avx2, set_splat_i32_m256i(31));
        Self { avx2: shl_each_u32_m256i(self.avx2, shift_by) }
      } else {
        Self {
          a : self.a.shl(rhs.a),
          b : self.b.shl(rhs.b),
        }
      }
    }
  }
}

impl u32x8 {
  #[inline]
  #[must_use]
  pub const fn new(array: [u32; 8]) -> Self {
    unsafe { core::intrinsics::transmute(array) }
  }
  #[inline]
  #[must_use]
  pub fn cmp_eq(self, rhs: Self) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: cmp_eq_mask_i32_m256i(self.avx2, rhs.avx2 ) }
      } else {
        Self {
          a : self.a.cmp_eq(rhs.a),
          b : self.b.cmp_eq(rhs.b),
        }
      }
    }
  }
  #[inline]
  #[must_use]
  pub fn cmp_gt(self, rhs: Self) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        // no unsigned gt than so inverting the high bit will get the correct result
        let highbit = u32x8::splat(1 << 31);
        Self { avx2: cmp_gt_mask_i32_m256i((self ^ highbit).avx2, (rhs ^ highbit).avx2 ) }
      } else {
        Self {
          a : self.a.cmp_gt(rhs.a),
          b : self.b.cmp_gt(rhs.b),
        }
      }
    }
  }

  #[inline]
  #[must_use]
  pub fn cmp_lt(self, rhs: Self) -> Self {
    // lt is just gt the other way around
    rhs.cmp_gt(self)
  }

  /// Multiplies 32x32 bit to 64 bit and then only keeps the high 32 bits of the
  /// result. Useful for implementing divide constant value (see t_usefulness
  /// example)
  #[inline]
  #[must_use]
  pub fn mul_keep_high(self, rhs: u32x8) -> u32x8 {
    pick! {
      if #[cfg(target_feature="avx2")] {
        let a : [u32;8]= cast(self);
        let b : [u32;8]= cast(rhs);

        // let the compiler shuffle the values around, it does the right thing
        let r1 : [u32;8] = cast(mul_u64_low_bits_m256i(cast([a[0], 0, a[1], 0, a[2], 0, a[3], 0]), cast([b[0], 0, b[1], 0, b[2], 0, b[3], 0])));
        let r2 : [u32;8] = cast(mul_u64_low_bits_m256i(cast([a[4], 0, a[5], 0, a[6], 0, a[7], 0]), cast([b[4], 0, b[5], 0, b[6], 0, b[7], 0])));

        cast([r1[1], r1[3], r1[5], r1[7], r2[1], r2[3], r2[5], r2[7]])
      } else {
        Self {
          a : self.a.mul_keep_high(rhs.a),
          b : self.b.mul_keep_high(rhs.b),
        }
      }
    }
  }

  #[inline]
  #[must_use]
  pub fn blend(self, t: Self, f: Self) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: blend_varying_i8_m256i(f.avx2, t.avx2, self.avx2) }
      } else {
        Self {
          a : self.a.blend(t.a, f.a),
          b : self.b.blend(t.b, f.b),
        }
      }
    }
  }

  #[inline]
  #[must_use]
  pub fn max(self, rhs: Self) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: max_u32_m256i(self.avx2, rhs.avx2 ) }
      } else {
        Self {
          a : self.a.max(rhs.a),
          b : self.b.max(rhs.b),
        }
      }
    }
  }
  #[inline]
  #[must_use]
  pub fn min(self, rhs: Self) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: min_u32_m256i(self.avx2, rhs.avx2 ) }
      } else {
        Self {
          a : self.a.min(rhs.a),
          b : self.b.min(rhs.b),
        }
      }
    }
  }

  #[inline]
  #[must_use]
  pub fn any(self) -> bool {
    pick! {
      if #[cfg(target_feature="avx2")] {
        ((move_mask_i8_m256i(self.avx2) as u32) & 0b10001000100010001000100010001000) != 0
      } else {
        (self.a | self.b).any()
      }
    }
  }

  #[inline]
  #[must_use]
  pub fn all(self) -> bool {
    pick! {
      if #[cfg(target_feature="avx2")] {
        ((move_mask_i8_m256i(self.avx2) as u32) & 0b10001000100010001000100010001000) == 0b10001000100010001000100010001000
      } else {
        (self.a & self.b).all()
      }
    }
  }

  #[inline]
  #[must_use]
  pub fn none(self) -> bool {
    !self.any()
  }

  #[inline]
  pub fn to_array(self) -> [u32; 8] {
    cast(self)
  }

  #[inline]
  pub fn as_array_ref(&self) -> &[u32; 8] {
    cast_ref(self)
  }

  #[inline]
  pub fn as_array_mut(&mut self) -> &mut [u32; 8] {
    cast_mut(self)
  }
}

impl Not for u32x8 {
  type Output = Self;
  #[inline]
  fn not(self) -> Self {
    pick! {
      if #[cfg(target_feature="avx2")] {
        Self { avx2: self.avx2.not()  }
      } else {
        Self {
          a : self.a.not(),
          b : self.b.not(),
        }
      }
    }
  }
}