use crate::math::{Isometry, Vector};
use crate::query::algorithms::{gjk, gjk::GJKResult, CSOPoint};
use crate::query::algorithms::{VoronoiSimplex, EPA};
use crate::query::Contact;
use crate::shape::SupportMap;
use na::{RealField, Unit};
/// Contact between support-mapped shapes (`Cuboid`, `ConvexHull`, etc.)
pub fn contact_support_map_support_map<N, G1: ?Sized, G2: ?Sized>(
m1: &Isometry<N>,
g1: &G1,
m2: &Isometry<N>,
g2: &G2,
prediction: N,
) -> Option<Contact<N>>
where
N: RealField + Copy,
G1: SupportMap<N>,
G2: SupportMap<N>,
{
let simplex = &mut VoronoiSimplex::new();
match contact_support_map_support_map_with_params(m1, g1, m2, g2, prediction, simplex, None) {
GJKResult::ClosestPoints(world1, world2, normal) => {
Some(Contact::new_wo_depth(world1, world2, normal))
}
GJKResult::NoIntersection(_) => None,
GJKResult::Intersection => unreachable!(),
GJKResult::Proximity(_) => unreachable!(),
}
}
/// Contact between support-mapped shapes (`Cuboid`, `ConvexHull`, etc.)
///
/// This allows a more fine grained control other the underlying GJK algorigtm.
/// The vector-typed result is the vector that should be passed as `init` for
/// subsequent executions of the algorithm. It is also the contact
/// normal (that points toward the outside of the first solid).
pub fn contact_support_map_support_map_with_params<N, G1: ?Sized, G2: ?Sized>(
m1: &Isometry<N>,
g1: &G1,
m2: &Isometry<N>,
g2: &G2,
prediction: N,
simplex: &mut VoronoiSimplex<N>,
init_dir: Option<Unit<Vector<N>>>,
) -> GJKResult<N>
where
N: RealField + Copy,
G1: SupportMap<N>,
G2: SupportMap<N>,
{
let dir = if let Some(init_dir) = init_dir {
init_dir
} else if let Some(init_dir) = Unit::try_new(
m2.translation.vector - m1.translation.vector,
N::default_epsilon(),
) {
init_dir
} else {
Vector::x_axis()
};
simplex.reset(CSOPoint::from_shapes(m1, g1, m2, g2, &dir));
let cpts = gjk::closest_points(m1, g1, m2, g2, prediction, true, simplex);
if cpts != GJKResult::Intersection {
return cpts;
}
// The point is inside of the CSO: use the fallback algorithm
let mut epa = EPA::new();
if let Some((p1, p2, n)) = epa.closest_points(m1, g1, m2, g2, simplex) {
// FIXME: the n here,
return GJKResult::ClosestPoints(p1, p2, n);
}
// Everything failed
GJKResult::NoIntersection(Vector::x_axis())
// // When all else fail (e.g. because of roundup errors, default to minkowski sampling.
// match minkowski_sampling::closest_points(m1, g1, m2, g2, simplex) {
// Some((p1, p2, normal)) => {
// let depth = na::dot(&(p1 - p2), &normal);
// GJKResult::Projection(Contact::new(p1, p2, normal, depth), normal)
// }
// None => GJKResult::NoIntersection(na::zero()), // panic!("Both GJK and fallback algorithm failed.")
// }
}