claxon/frame.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
// Claxon -- A FLAC decoding library in Rust
// Copyright 2014 Ruud van Asseldonk
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// A copy of the License has been included in the root of the repository.
//! The `frame` module deals with the frames that make up a FLAC stream.
use std::i32;
use crc::{Crc8Reader, Crc16Reader};
use error::{Error, Result, fmt_err};
use input::{Bitstream, ReadBytes};
use subframe;
#[derive(Clone, Copy)]
enum BlockingStrategy {
Fixed,
Variable,
}
#[derive(Clone, Copy)]
enum BlockTime {
FrameNumber(u32),
SampleNumber(u64),
}
#[derive(Clone, Copy, Debug)]
enum ChannelAssignment {
/// The `n: u8` channels are coded as-is.
Independent(u8),
/// Channel 0 is the left channel, channel 1 is the side channel.
LeftSideStereo,
/// Channel 0 is the side channel, channel 1 is the right channel.
RightSideStereo,
/// Channel 0 is the mid channel, channel 1 is the side channel.
MidSideStereo,
}
#[derive(Clone, Copy)]
struct FrameHeader {
pub block_time: BlockTime,
pub block_size: u16,
pub sample_rate: Option<u32>,
pub channel_assignment: ChannelAssignment,
pub bits_per_sample: Option<u32>,
}
impl FrameHeader {
pub fn channels(&self) -> u8 {
match self.channel_assignment {
ChannelAssignment::Independent(n) => n,
ChannelAssignment::LeftSideStereo => 2,
ChannelAssignment::RightSideStereo => 2,
ChannelAssignment::MidSideStereo => 2,
}
}
}
/// Reads a variable-length integer encoded as what is called "UTF-8" coding
/// in the specification. (It is not real UTF-8.) This function can read
/// integers encoded in this way up to 36-bit integers.
fn read_var_length_int<R: ReadBytes>(input: &mut R) -> Result<u64> {
// The number of consecutive 1s followed by a 0 is the number of additional
// bytes to read.
let first = try!(input.read_u8());
let mut read_additional = 0u8;
let mut mask_data = 0b0111_1111u8;
let mut mask_mark = 0b1000_0000u8;
// Determine the number of leading 1s.
while first & mask_mark != 0 {
read_additional = read_additional + 1;
mask_data = mask_data >> 1;
mask_mark = mask_mark >> 1;
}
// A single leading 1 is a follow-up byte and thus invalid.
if read_additional > 0 {
if read_additional == 1 {
return fmt_err("invalid variable-length integer");
} else {
// The number of 1s (if > 1) is the total number of bytes, not the
// number of additional bytes.
read_additional = read_additional - 1;
}
}
// Each additional byte will yield 6 extra bits, so shift the most
// significant bits into the correct position.
let mut result = ((first & mask_data) as u64) << (6 * read_additional);
for i in (0..read_additional as i16).rev() {
let byte = try!(input.read_u8());
// The two most significant bits _must_ be 10.
if byte & 0b1100_0000 != 0b1000_0000 {
return fmt_err("invalid variable-length integer");
}
result = result | (((byte & 0b0011_1111) as u64) << (6 * i as usize));
}
Ok(result)
}
#[test]
fn verify_read_var_length_int() {
use std::io;
use error::Error;
use input::BufferedReader;
let mut reader = BufferedReader::new(
io::Cursor::new(vec![0x24, 0xc2, 0xa2, 0xe2, 0x82, 0xac, 0xf0, 0x90, 0x8d,
0x88, 0xc2, 0x00, 0x80]));
assert_eq!(read_var_length_int(&mut reader).unwrap(), 0x24);
assert_eq!(read_var_length_int(&mut reader).unwrap(), 0xa2);
assert_eq!(read_var_length_int(&mut reader).unwrap(), 0x20ac);
assert_eq!(read_var_length_int(&mut reader).unwrap(), 0x010348);
// Two-byte integer with invalid continuation byte should fail.
assert_eq!(read_var_length_int(&mut reader).err().unwrap(),
Error::FormatError("invalid variable-length integer"));
// Continuation byte can never be the first byte.
assert_eq!(read_var_length_int(&mut reader).err().unwrap(),
Error::FormatError("invalid variable-length integer"));
}
fn read_frame_header_or_eof<R: ReadBytes>(input: &mut R) -> Result<Option<FrameHeader>> {
// The frame header includes a CRC-8 at the end. It can be computed
// automatically while reading, by wrapping the input reader in a reader
// that computes the CRC.
let mut crc_input = Crc8Reader::new(input);
// First are 14 bits frame sync code, a reserved bit, and blocking stategy.
// If instead of the two bytes we find the end of the stream, return
// `Nothing`, indicating EOF.
let sync_res_block = match try!(crc_input.read_be_u16_or_eof()) {
None => return Ok(None),
Some(x) => x,
};
// The first 14 bits must be 11111111111110.
let sync_code = sync_res_block & 0b1111_1111_1111_1100;
if sync_code != 0b1111_1111_1111_1000 {
return fmt_err("frame sync code missing");
}
// The next bit has a mandatory value of 0 at the moment of writing. The
// spec says "0: mandatory value, 1: reserved for future use". As it is
// unlikely that the FLAC format will every change, we treat features in
// the spec that are not implemented as `Error::Unsupported`, and this is
// a format error.
if sync_res_block & 0b0000_0000_0000_0010 != 0 {
return fmt_err("invalid frame header, encountered reserved value");
}
// The final bit determines the blocking strategy.
let blocking_strategy = if sync_res_block & 0b0000_0000_0000_0001 == 0 {
BlockingStrategy::Fixed
} else {
BlockingStrategy::Variable
};
// Next are 4 bits block size and 4 bits sample rate.
let bs_sr = try!(crc_input.read_u8());
let mut block_size = 0u16;
let mut read_8bit_bs = false;
let mut read_16bit_bs = false;
// There are some pre-defined bit patterns. Some mean 'get from end of
// header instead'.
match bs_sr >> 4 {
// The value 0000 is reserved.
0b0000 => return fmt_err("invalid frame header, encountered reserved value"),
0b0001 => block_size = 192,
n if 0b0010 <= n && n <= 0b0101 => block_size = 576 * (1 << (n - 2) as usize),
0b0110 => read_8bit_bs = true,
0b0111 => read_16bit_bs = true,
n => block_size = 256 * (1 << (n - 8) as usize),
}
// For the sample rate there is a number of pre-defined bit patterns as
// well. Again, some mean 'get from end of header instead'.
let mut sample_rate = None;
let mut read_8bit_sr = false;
let mut read_16bit_sr = false;
let mut read_16bit_sr_ten = false;
match bs_sr & 0b0000_1111 {
0b0000 => sample_rate = None, // 0000 means 'get from streaminfo block'.
0b0001 => sample_rate = Some(88_200),
0b0010 => sample_rate = Some(176_400),
0b0011 => sample_rate = Some(192_000),
0b0100 => sample_rate = Some(8_000),
0b0101 => sample_rate = Some(16_000),
0b0110 => sample_rate = Some(22_050),
0b0111 => sample_rate = Some(24_000),
0b1000 => sample_rate = Some(32_000),
0b1001 => sample_rate = Some(44_100),
0b1010 => sample_rate = Some(48_000),
0b1011 => sample_rate = Some(96_000),
0b1100 => read_8bit_sr = true, // Read Hz from end of header.
0b1101 => read_16bit_sr = true, // Read Hz from end of header.
0b1110 => read_16bit_sr_ten = true, // Read tens of Hz from end of header.
// 1111 is invalid to prevent sync-fooling.
// Other values are impossible at this point.
_ => return fmt_err("invalid frame header"),
}
// Next are 4 bits channel assignment, 3 bits sample size, and 1 reserved bit.
let chan_bps_res = try!(crc_input.read_u8());
// The most significant 4 bits determine channel assignment.
let channel_assignment = match chan_bps_res >> 4 {
// Values 0 through 7 indicate n + 1 channels without mixing.
n if n < 8 => ChannelAssignment::Independent(n + 1),
0b1000 => ChannelAssignment::LeftSideStereo,
0b1001 => ChannelAssignment::RightSideStereo,
0b1010 => ChannelAssignment::MidSideStereo,
// Values 1011 through 1111 are reserved and thus invalid.
_ => return fmt_err("invalid frame header, encountered reserved value"),
};
// The next three bits indicate bits per sample.
let bits_per_sample = match (chan_bps_res & 0b0000_1110) >> 1 {
0b000 => None, // 000 means 'get from streaminfo block'.
0b001 => Some(8),
0b010 => Some(12),
0b100 => Some(16),
0b101 => Some(20),
0b110 => Some(24),
// Values 011 and 111 are reserved. Other values are impossible.
_ => return fmt_err("invalid frame header, encountered reserved value"),
};
// The final bit has a mandatory value of 0, it is a reserved bit.
if chan_bps_res & 0b0000_0001 != 0 {
return fmt_err("invalid frame header, encountered reserved value");
}
let block_time = match blocking_strategy {
BlockingStrategy::Variable => {
// The sample number is encoded in 8-56 bits, at most a 36-bit int.
let sample = try!(read_var_length_int(&mut crc_input));
BlockTime::SampleNumber(sample)
}
BlockingStrategy::Fixed => {
// The frame number is encoded in 8-48 bits, at most a 31-bit int.
let frame = try!(read_var_length_int(&mut crc_input));
// A frame number larger than 31 bits is therefore invalid.
if frame > 0x7fffffff {
return fmt_err("invalid frame header, frame number too large");
}
BlockTime::FrameNumber(frame as u32)
}
};
if read_8bit_bs {
// 8 bit block size - 1 is stored.
let bs = try!(crc_input.read_u8());
block_size = bs as u16 + 1;
}
if read_16bit_bs {
// 16-bit block size - 1 is stored. Note that the max block size that
// can be indicated in the streaminfo block is a 16-bit number, so a
// value of 0xffff would be invalid because it exceeds the max block
// size, though this is not mentioned explicitly in the specification.
let bs = try!(crc_input.read_be_u16());
if bs == 0xffff {
return fmt_err("invalid block size, exceeds 65535");
}
block_size = bs + 1;
}
if read_8bit_sr {
let sr = try!(crc_input.read_u8());
sample_rate = Some(sr as u32);
}
if read_16bit_sr {
let sr = try!(crc_input.read_be_u16());
sample_rate = Some(sr as u32);
}
if read_16bit_sr_ten {
let sr_ten = try!(crc_input.read_be_u16());
sample_rate = Some(sr_ten as u32 * 10);
}
// Next is an 8-bit CRC that is computed over the entire header so far.
let computed_crc = crc_input.crc();
let presumed_crc = try!(crc_input.read_u8());
// Do not verify checksum during fuzzing, otherwise malformed input from
// fuzzer won't reach the actually interesting code.
#[cfg(not(fuzzing))]
{
if computed_crc != presumed_crc {
return fmt_err("frame header CRC mismatch");
}
}
// Silence unused variable warnings.
#[cfg(fuzzing)]
let _ = computed_crc == presumed_crc;
let frame_header = FrameHeader {
block_time: block_time,
block_size: block_size,
sample_rate: sample_rate,
channel_assignment: channel_assignment,
bits_per_sample: bits_per_sample,
};
Ok(Some(frame_header))
}
/// Converts a buffer with left samples and a side channel in-place to left ++ right.
fn decode_left_side(buffer: &mut [i32]) {
let block_size = buffer.len() / 2;
let (mids, sides) = buffer.split_at_mut(block_size);
for (fst, snd) in mids.iter_mut().zip(sides) {
let left = *fst;
let side = *snd;
// Left is correct already, only the right channel needs to be decoded.
// side = left - right => right = left - side. A valid FLAC file will
// never overflow here. If we do have an overflow then we decode
// garbage, but at least Rust does not panic in debug mode due to
// overflow.
let right = left.wrapping_sub(side);
*snd = right;
}
}
#[test]
fn verify_decode_left_side() {
let mut buffer = vec![2, 5, 83, 113, 127, -63, -45, -15, 7, 38, 142, 238, 0, -152, -52, -18];
let result = vec![2, 5, 83, 113, 127, -63, -45, -15, -5, -33, -59, -125, 127, 89, 7, 3];
decode_left_side(&mut buffer);
assert_eq!(buffer, result);
}
/// Converts a buffer with right samples and a side channel in-place to left ++ right.
fn decode_right_side(buffer: &mut [i32]) {
let block_size = buffer.len() / 2;
let (mids, sides) = buffer.split_at_mut(block_size);
for (fst, snd) in mids.iter_mut().zip(sides) {
let side = *fst;
let right = *snd;
// Right is correct already, only the left channel needs to be decoded.
// side = left - right => left = side + right. A valid FLAC file will
// never overflow here. If we do have an overflow then we decode
// garbage, but at least Rust does not panic in debug mode due to
// overflow.
let left = side.wrapping_add(right);
*fst = left;
}
}
#[test]
fn verify_decode_right_side() {
let mut buffer = vec![7, 38, 142, 238, 0, -152, -52, -18, -5, -33, -59, -125, 127, 89, 7, 3];
let result = vec![2, 5, 83, 113, 127, -63, -45, -15, -5, -33, -59, -125, 127, 89, 7, 3];
decode_right_side(&mut buffer);
assert_eq!(buffer, result);
}
/// Converts a buffer with mid samples and a side channel in-place to left ++ right.
fn decode_mid_side(buffer: &mut [i32]) {
let block_size = buffer.len() / 2;
let (mids, sides) = buffer.split_at_mut(block_size);
for (fst, snd) in mids.iter_mut().zip(sides) {
let mid = *fst;
let side = *snd;
// Double mid first, and then correct for truncated rounding that
// will have occured if side is odd. Note that samples are never
// expected to exceed 25 bits, so the wrapping multiplication does not
// actually wrap for valid files.
let mid = mid.wrapping_mul(2) | (side & 1);
let left = mid.wrapping_add(side) / 2;
let right = mid.wrapping_sub(side) / 2;
*fst = left;
*snd = right;
}
}
#[test]
fn verify_decode_mid_side() {
let mut buffer = vec!(-2, -14, 12, -6, 127, 13, -19, -6,
7, 38, 142, 238, 0, -152, -52, -18);
let result = vec!(2, 5, 83, 113, 127, -63, -45, -15,
-5, -33, -59, -125, 127, 89, 7, 3);
decode_mid_side(&mut buffer);
assert_eq!(buffer, result);
}
/// A block of raw audio samples.
pub struct Block {
/// The sample number of the first sample in the this block.
first_sample_number: u64,
/// The number of samples in the block.
block_size: u32,
/// The number of channels in the block.
channels: u32,
/// The decoded samples, the channels stored consecutively.
buffer: Vec<i32>,
}
impl Block {
fn new(time: u64, bs: u32, buffer: Vec<i32>) -> Block {
Block {
first_sample_number: time,
block_size: bs,
channels: buffer.len() as u32 / bs,
buffer: buffer,
}
}
/// Returns a block with 0 channels and 0 samples.
pub fn empty() -> Block {
Block {
first_sample_number: 0,
block_size: 0,
channels: 0,
buffer: Vec::with_capacity(0),
}
}
/// Returns the inter-channel sample number of the first sample in the block.
///
/// The time is independent of the number of channels. To get the start time
/// of the block in seconds, divide this number by the sample rate in the
/// streaminfo.
pub fn time(&self) -> u64 {
self.first_sample_number
}
/// Returns the total number of samples in this block.
///
/// Samples in different channels are counted as distinct samples.
#[inline(always)]
pub fn len(&self) -> u32 {
// Note: this cannot overflow, because the block size fits in 16 bits,
// and the number of channels is at most 8.
self.block_size * self.channels
}
/// Returns the number of inter-channel samples in the block.
///
/// The duration is independent of the number of channels. The returned
/// value is also referred to as the *block size*. To get the duration of
/// the block in seconds, divide this number by the sample rate in the
/// streaminfo.
#[inline(always)]
pub fn duration(&self) -> u32 {
self.block_size
}
/// Returns the number of channels in the block.
// TODO: Should a frame know this? #channels must be constant throughout the stream anyway ...
// TODO: Rename to `num_channels` for clarity.
#[inline(always)]
pub fn channels(&self) -> u32 {
self.channels
}
/// Returns the (zero-based) `ch`-th channel as a slice.
///
/// # Panics
///
/// Panics if `ch >= channels()`.
#[inline(always)]
pub fn channel(&self, ch: u32) -> &[i32] {
let bsz = self.block_size as usize;
let ch_usz = ch as usize;
&self.buffer[ch_usz * bsz..(ch_usz + 1) * bsz]
}
/// Returns a sample in this block.
///
/// The value returned is for the zero-based `ch`-th channel of the
/// inter-channel sample with index `sample` in this block (so this is not
/// the global sample number).
///
/// # Panics
///
/// Panics if `ch >= channels()` or if `sample >= len()` for the last
/// channel.
#[inline(always)]
pub fn sample(&self, ch: u32, sample: u32) -> i32 {
let bsz = self.block_size as usize;
return self.buffer[ch as usize * bsz + sample as usize];
}
/// Returns the underlying buffer that stores the samples in this block.
///
/// This allows the buffer to be reused to decode the next frame. The
/// capacity of the buffer may be bigger than `len()` times `channels()`.
pub fn into_buffer(self) -> Vec<i32> {
return self.buffer;
}
/// Returns an iterator that produces left and right channel samples.
///
/// This iterator can be more efficient than requesting a sample directly,
/// because it avoids a bounds check.
///
/// # Panics
///
/// Panics if the number of channels in the block is not 2.
#[inline]
pub fn stereo_samples<'a>(&'a self) -> StereoSamples<'a> {
if self.channels != 2 {
panic!("stereo_samples() must only be called for blocks with two channels.");
}
assert!(self.buffer.len() >= self.block_size as usize * 2);
StereoSamples {
buffer: &self.buffer,
block_duration: self.block_size,
current_sample: 0,
}
}
}
#[test]
fn verify_block_sample() {
let block = Block {
first_sample_number: 0,
block_size: 5,
channels: 3,
buffer: vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47],
};
assert_eq!(block.sample(0, 2), 5);
assert_eq!(block.sample(1, 3), 23);
assert_eq!(block.sample(2, 4), 47);
}
/// An iterator over the stereo sample pairs in a block.
///
/// This iterator is produced by `Block::stereo_samples()`.
pub struct StereoSamples<'a> {
buffer: &'a [i32],
block_duration: u32,
current_sample: u32,
}
impl<'a> Iterator for StereoSamples<'a> {
type Item = (i32, i32);
#[inline(always)]
fn next(&mut self) -> Option<(i32, i32)> {
if self.current_sample == self.block_duration {
None
} else {
let ch_offset = self.block_duration as usize;
let idx = self.current_sample as usize;
// Indexing without bounds check is safe here, because the current
// sample is less than the block duration, and the buffer size is at
// least twice the block duration. (There is an assertion for that
// too when the iterator is constructed.)
let samples = unsafe {
let left = *self.buffer.get_unchecked(idx);
let right = *self.buffer.get_unchecked(idx + ch_offset);
(left, right)
};
self.current_sample += 1;
Some(samples)
}
}
}
#[test]
fn verify_block_stereo_samples_iterator() {
let block = Block {
first_sample_number: 0,
block_size: 3,
channels: 2,
buffer: vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47],
};
let mut iter = block.stereo_samples();
assert_eq!(iter.next(), Some((2, 7)));
assert_eq!(iter.next(), Some((3, 11)));
assert_eq!(iter.next(), Some((5, 13)));
assert_eq!(iter.next(), None);
}
/// Reads frames from a stream and exposes decoded blocks as an iterator.
///
/// TODO: for now, it is assumes that the reader starts at a frame header;
/// no searching for a sync code is performed at the moment.
pub struct FrameReader<R: ReadBytes> {
input: R,
}
/// Either a `Block` or an `Error`.
// TODO: The option should not be part of FrameResult.
pub type FrameResult = Result<Option<Block>>;
/// A function to expand the length of a buffer, or replace the buffer altogether,
/// so it can hold at least `new_len` elements. The contents of the buffer can
/// be anything, it is assumed they will be overwritten anyway.
///
/// To use this function safely, the caller must overwrite all `new_len` bytes.
fn ensure_buffer_len(mut buffer: Vec<i32>, new_len: usize) -> Vec<i32> {
if buffer.len() < new_len {
// Previous data will be overwritten, so instead of resizing the
// vector if it is too small, we might as well allocate a new one.
// NOTE: In the past we allocated a vector with Vec::with_capacity here,
// setting it to the right length without zeroing (and also setting the
// right length if the capacity was sufficient). However, the
// performance impact of zeroing turned out to be negligible (a 0.2%
// increase in decode times in an adversarial scenario, but a 0.03%
// increase on real-world files when the buffer is recycled). We still
// don't zero out previous contents of the buffer as it was passed in,
// zeroing only happens on resize or for new allocations.
if buffer.capacity() < new_len {
buffer = vec![0; new_len];
} else {
buffer.resize(new_len, 0);
}
} else {
buffer.truncate(new_len);
}
buffer
}
#[test]
fn ensure_buffer_len_returns_buffer_with_new_len() {
for capacity in 0..10 {
for new_len in 0..10 {
let buffer = Vec::with_capacity(capacity);
let resized = ensure_buffer_len(buffer, new_len);
assert_eq!(resized.len(), new_len);
}
}
}
impl<R: ReadBytes> FrameReader<R> {
/// Creates a new frame reader that will yield at least one element.
pub fn new(input: R) -> FrameReader<R> {
FrameReader {
input: input,
}
}
/// Decodes the next frame or returns an error if the data was invalid.
///
/// The buffer is moved into the returned block, so that the same buffer may
/// be reused to decode multiple blocks, avoiding a heap allocation every
/// time. It can be retrieved again with `block.into_buffer()`. If the
/// buffer is not large enough to hold all samples, a larger buffer is
/// allocated automatically.
///
/// TODO: I should really be consistent with 'read' and 'decode'.
pub fn read_next_or_eof(&mut self, mut buffer: Vec<i32>) -> FrameResult {
// The frame includes a CRC-16 at the end. It can be computed
// automatically while reading, by wrapping the input reader in a reader
// that computes the CRC. If the stream ended before the the frame
// header (so not in the middle of the frame header), return `None`,
// indicating EOF.
let mut crc_input = Crc16Reader::new(&mut self.input);
let header = match try!(read_frame_header_or_eof(&mut crc_input)) {
None => return Ok(None),
Some(h) => h,
};
// We must allocate enough space for all channels in the block to be
// decoded.
let total_samples = header.channels() as usize * header.block_size as usize;
// Ensure the buffer is the right size to hold all samples. For
// correctness, we must be careful to overwrite each byte in the buffer.
buffer = ensure_buffer_len(buffer, total_samples);
let bps = match header.bits_per_sample {
Some(x) => x,
// TODO: if the bps is missing from the header, we must get it from
// the streaminfo block.
None => return Err(Error::Unsupported("header without bits per sample info")),
};
// The number of bits per sample must not exceed 32, for we decode into
// an i32. TODO: Turn this into an error instead of panic? Or is it
// enforced elsewhere?
debug_assert!(bps as usize <= 32);
// In the next part of the stream, nothing is byte-aligned any more,
// we need a bitstream. Then we can decode subframes from the bitstream.
{
let mut bitstream = Bitstream::new(&mut crc_input);
let bs = header.block_size as usize;
match header.channel_assignment {
ChannelAssignment::Independent(n_ch) => {
for ch in 0..n_ch as usize {
try!(subframe::decode(&mut bitstream,
bps,
&mut buffer[ch * bs..(ch + 1) * bs]));
}
}
ChannelAssignment::LeftSideStereo => {
// The side channel has one extra bit per sample.
try!(subframe::decode(&mut bitstream, bps, &mut buffer[..bs]));
try!(subframe::decode(&mut bitstream,
bps + 1,
&mut buffer[bs..bs * 2]));
// Then decode the side channel into the right channel.
decode_left_side(&mut buffer[..bs * 2]);
}
ChannelAssignment::RightSideStereo => {
// The side channel has one extra bit per sample.
try!(subframe::decode(&mut bitstream, bps + 1, &mut buffer[..bs]));
try!(subframe::decode(&mut bitstream, bps, &mut buffer[bs..bs * 2]));
// Then decode the side channel into the left channel.
decode_right_side(&mut buffer[..bs * 2]);
}
ChannelAssignment::MidSideStereo => {
// Decode mid as the first channel, then side with one
// extra bitp per sample.
try!(subframe::decode(&mut bitstream, bps, &mut buffer[..bs]));
try!(subframe::decode(&mut bitstream,
bps + 1,
&mut buffer[bs..bs * 2]));
// Then decode mid-side channel into left-right.
decode_mid_side(&mut buffer[..bs * 2]);
}
}
// When the bitstream goes out of scope, we can use the `input`
// reader again, which will be byte-aligned. The specification
// dictates that padding should consist of zero bits, but we do not
// enforce this here.
// TODO: It could be enforced by having a read_to_byte_aligned
// method on the bit reader; it'd be a simple comparison.
}
// The frame footer is a 16-bit CRC.
let computed_crc = crc_input.crc();
let presumed_crc = try!(crc_input.read_be_u16());
// Do not verify checksum during fuzzing, otherwise malformed input from
// the fuzzer won't reach the actually interesting code.
#[cfg(not(fuzzing))]
{
if computed_crc != presumed_crc {
return fmt_err("frame CRC mismatch");
}
}
// Silence unused variable warnings.
#[cfg(fuzzing)]
let _ = computed_crc == presumed_crc;
// TODO: constant block size should be verified if a frame number is
// encountered.
let time = match header.block_time {
BlockTime::FrameNumber(fnr) => header.block_size as u64 * fnr as u64,
BlockTime::SampleNumber(snr) => snr,
};
let block = Block::new(time, header.block_size as u32, buffer);
Ok(Some(block))
}
/// Destroy the frame reader, returning the wrapped reader.
pub fn into_inner(self) -> R {
self.input
}
}
// TODO: implement Iterator<Item = FrameResult> for FrameReader, with an
// accurate size hint.