nalgebra/geometry/
rotation_ops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 *
 * This provides the following operator overladings:
 *
 * Index<(usize, usize)>
 *
 * Rotation × Rotation
 * Rotation ÷ Rotation
 * Rotation × Matrix
 * Matrix   × Rotation
 * Matrix   ÷ Rotation
 * Rotation × Point
 * Rotation × Unit<Vector>
 *
 *
 * Rotation ×= Rotation
 * Matrix   ×= Rotation
 */

use num::{One, Zero};
use std::ops::{Div, DivAssign, Index, Mul, MulAssign};

use simba::scalar::{ClosedAdd, ClosedMul};

use crate::base::allocator::Allocator;
use crate::base::constraint::{AreMultipliable, ShapeConstraint};
use crate::base::dimension::{Dim, U1};
use crate::base::storage::Storage;
use crate::base::{
    Const, DefaultAllocator, Matrix, OMatrix, SMatrix, SVector, Scalar, Unit, Vector,
};

use crate::geometry::{Point, Rotation};

impl<T: Scalar, const D: usize> Index<(usize, usize)> for Rotation<T, D> {
    type Output = T;

    #[inline]
    fn index(&self, row_col: (usize, usize)) -> &T {
        self.matrix().index(row_col)
    }
}

// Rotation × Rotation
md_impl_all!(
    Mul, mul;
    (Const<D>, Const<D>), (Const<D>, Const<D>)
    const D;
    for;
    where;
    self: Rotation<T, D>, right: Rotation<T, D>, Output = Rotation<T, D>;
    [val val] => Rotation::from_matrix_unchecked(self.into_inner() * right.into_inner());
    [ref val] => Rotation::from_matrix_unchecked(self.matrix() * right.into_inner());
    [val ref] => Rotation::from_matrix_unchecked(self.into_inner() * right.matrix());
    [ref ref] => Rotation::from_matrix_unchecked(self.matrix() * right.matrix());
);

// Rotation ÷ Rotation
// TODO: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
md_impl_all!(
    Div, div;
    (Const<D>, Const<D>), (Const<D>, Const<D>)
    const D;
    for;
    where;
    self: Rotation<T, D>, right: Rotation<T, D>, Output = Rotation<T, D>;
    [val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
    [ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
    [val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
    [ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);

// Rotation × Matrix
md_impl_all!(
    Mul, mul;
    (Const<D1>, Const<D1>), (R2, C2)
    const D1;
    for R2, C2, SB;
    where R2: Dim, C2: Dim, SB: Storage<T, R2, C2>,
          DefaultAllocator: Allocator<T, Const<D1>, C2>,
          ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>;
    self: Rotation<T, D1>, right: Matrix<T, R2, C2, SB>, Output = OMatrix<T, Const<D1>, C2>;
    [val val] => self.into_inner() * right;
    [ref val] => self.matrix() * right;
    [val ref] => self.into_inner() * right;
    [ref ref] => self.matrix() * right;
);

// Matrix × Rotation
md_impl_all!(
    Mul, mul;
    (R1, C1), (Const<D2>, Const<D2>)
    const D2;
    for R1, C1, SA;
    where R1: Dim, C1: Dim, SA: Storage<T, R1, C1>,
          DefaultAllocator: Allocator<T, R1, Const<D2>>,
          ShapeConstraint:  AreMultipliable<R1, C1, Const<D2>, Const<D2>>;
    self: Matrix<T, R1, C1, SA>, right: Rotation<T, D2>, Output = OMatrix<T, R1, Const<D2>>;
    [val val] => self * right.into_inner();
    [ref val] => self * right.into_inner();
    [val ref] => self * right.matrix();
    [ref ref] => self * right.matrix();
);

// Matrix ÷ Rotation
md_impl_all!(
    Div, div;
    (R1, C1), (Const<D2>, Const<D2>)
    const D2;
    for R1, C1, SA;
    where R1: Dim, C1: Dim, SA: Storage<T, R1, C1>,
          DefaultAllocator: Allocator<T, R1, Const<D2>>,
          ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>;
    self: Matrix<T, R1, C1, SA>, right: Rotation<T, D2>, Output = OMatrix<T, R1, Const<D2>>;
    [val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
    [ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
    [val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
    [ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);

// Rotation × Point
// TODO: we don't handle properly non-zero origins here. Do we want this to be the intended
// behavior?
md_impl_all!(
    Mul, mul;
    (Const<D>, Const<D>), (Const<D>, U1)
    const D;
    for;
    where ShapeConstraint:  AreMultipliable<Const<D>, Const<D>, Const<D>, U1>;
    self: Rotation<T, D>, right: Point<T, D>, Output = Point<T, D>;
    [val val] => self.into_inner() * right;
    [ref val] => self.matrix() * right;
    [val ref] => self.into_inner() * right;
    [ref ref] => self.matrix() * right;
);

// Rotation × Unit<Vector>
md_impl_all!(
    Mul, mul;
    (Const<D>, Const<D>), (Const<D>, U1)
    const D;
    for S;
    where S: Storage<T, Const<D>>,
          ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>;
    self: Rotation<T, D>, right: Unit<Vector<T, Const<D>, S>>, Output = Unit<SVector<T, D>>;
    [val val] => Unit::new_unchecked(self.into_inner() * right.into_inner());
    [ref val] => Unit::new_unchecked(self.matrix() * right.into_inner());
    [val ref] => Unit::new_unchecked(self.into_inner() * right.as_ref());
    [ref ref] => Unit::new_unchecked(self.matrix() * right.as_ref());
);

// Rotation ×= Rotation
// TODO: try not to call `inverse()` explicitly.

md_assign_impl_all!(
    MulAssign, mul_assign;
    (Const<D>, Const<D>), (Const<D>, Const<D>)
    const D; for; where;
    self: Rotation<T, D>, right: Rotation<T, D>;
    [val] => self.matrix_mut_unchecked().mul_assign(right.into_inner());
    [ref] => self.matrix_mut_unchecked().mul_assign(right.matrix());
);

md_assign_impl_all!(
    DivAssign, div_assign;
    (Const<D>, Const<D>), (Const<D>, Const<D>)
    const D; for; where;
    self: Rotation<T, D>, right: Rotation<T, D>;
    [val] => self.matrix_mut_unchecked().mul_assign(right.inverse().into_inner());
    [ref] => self.matrix_mut_unchecked().mul_assign(right.inverse().matrix());
);

// Matrix *= Rotation
// TODO: try not to call `inverse()` explicitly.
// TODO: this shares the same limitations as for the current impl. of MulAssign for matrices.
// (In particular the number of matrix column must be equal to the number of rotation columns,
// i.e., equal to the rotation dimension.

md_assign_impl_all!(
    MulAssign, mul_assign;
    (Const<R1>, Const<C1>), (Const<C1>, Const<C1>)
    const R1, C1; for; where;
    self: SMatrix<T, R1, C1>, right: Rotation<T, C1>;
    [val] => self.mul_assign(right.into_inner());
    [ref] => self.mul_assign(right.matrix());
);

md_assign_impl_all!(
    DivAssign, div_assign;
    (Const<R1>, Const<C1>), (Const<C1>, Const<C1>)
    const R1, C1; for; where;
    self: SMatrix<T, R1, C1>, right: Rotation<T, C1>;
    [val] => self.mul_assign(right.inverse().into_inner());
    [ref] => self.mul_assign(right.inverse().matrix());
);