bindgen/ir/analysis/template_params.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
//! Discover which template type parameters are actually used.
//!
//! ### Why do we care?
//!
//! C++ allows ignoring template parameters, while Rust does not. Usually we can
//! blindly stick a `PhantomData<T>` inside a generic Rust struct to make up for
//! this. That doesn't work for templated type aliases, however:
//!
//! ```C++
//! template <typename T>
//! using Fml = int;
//! ```
//!
//! If we generate the naive Rust code for this alias, we get:
//!
//! ```ignore
//! pub type Fml<T> = ::std::os::raw::int;
//! ```
//!
//! And this is rejected by `rustc` due to the unused type parameter.
//!
//! (Aside: in these simple cases, `libclang` will often just give us the
//! aliased type directly, and we will never even know we were dealing with
//! aliases, let alone templated aliases. It's the more convoluted scenarios
//! where we get to have some fun...)
//!
//! For such problematic template aliases, we could generate a tuple whose
//! second member is a `PhantomData<T>`. Or, if we wanted to go the extra mile,
//! we could even generate some smarter wrapper that implements `Deref`,
//! `DerefMut`, `From`, `Into`, `AsRef`, and `AsMut` to the actually aliased
//! type. However, this is still lackluster:
//!
//! 1. Even with a billion conversion-trait implementations, using the generated
//! bindings is rather un-ergonomic.
//! 2. With either of these solutions, we need to keep track of which aliases
//! we've transformed like this in order to generate correct uses of the
//! wrapped type.
//!
//! Given that we have to properly track which template parameters ended up used
//! for (2), we might as well leverage that information to make ergonomic
//! bindings that don't contain any unused type parameters at all, and
//! completely avoid the pain of (1).
//!
//! ### How do we determine which template parameters are used?
//!
//! Determining which template parameters are actually used is a trickier
//! problem than it might seem at a glance. On the one hand, trivial uses are
//! easy to detect:
//!
//! ```C++
//! template <typename T>
//! class Foo {
//! T trivial_use_of_t;
//! };
//! ```
//!
//! It gets harder when determining if one template parameter is used depends on
//! determining if another template parameter is used. In this example, whether
//! `U` is used depends on whether `T` is used.
//!
//! ```C++
//! template <typename T>
//! class DoesntUseT {
//! int x;
//! };
//!
//! template <typename U>
//! class Fml {
//! DoesntUseT<U> lololol;
//! };
//! ```
//!
//! We can express the set of used template parameters as a constraint solving
//! problem (where the set of template parameters used by a given IR item is the
//! union of its sub-item's used template parameters) and iterate to a
//! fixed-point.
//!
//! We use the `ir::analysis::MonotoneFramework` infrastructure for this
//! fix-point analysis, where our lattice is the mapping from each IR item to
//! the powerset of the template parameters that appear in the input C++ header,
//! our join function is set union. The set of template parameters appearing in
//! the program is finite, as is the number of IR items. We start at our
//! lattice's bottom element: every item mapping to an empty set of template
//! parameters. Our analysis only adds members to each item's set of used
//! template parameters, never removes them, so it is monotone. Because our
//! lattice is finite and our constraint function is monotone, iteration to a
//! fix-point will terminate.
//!
//! See `src/ir/analysis.rs` for more.
use super::{ConstrainResult, MonotoneFramework};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::item::{Item, ItemSet};
use crate::ir::template::{TemplateInstantiation, TemplateParameters};
use crate::ir::traversal::{EdgeKind, Trace};
use crate::ir::ty::TypeKind;
use crate::{HashMap, HashSet};
/// An analysis that finds for each IR item its set of template parameters that
/// it uses.
///
/// We use the monotone constraint function `template_param_usage`, defined as
/// follows:
///
/// * If `T` is a named template type parameter, it trivially uses itself:
///
/// ```ignore
/// template_param_usage(T) = { T }
/// ```
///
/// * If `inst` is a template instantiation, `inst.args` are the template
/// instantiation's template arguments, `inst.def` is the template definition
/// being instantiated, and `inst.def.params` is the template definition's
/// template parameters, then the instantiation's usage is the union of each
/// of its arguments' usages *if* the corresponding template parameter is in
/// turn used by the template definition:
///
/// ```ignore
/// template_param_usage(inst) = union(
/// template_param_usage(inst.args[i])
/// for i in 0..length(inst.args.length)
/// if inst.def.params[i] in template_param_usage(inst.def)
/// )
/// ```
///
/// * Finally, for all other IR item kinds, we use our lattice's `join`
/// operation: set union with each successor of the given item's template
/// parameter usage:
///
/// ```ignore
/// template_param_usage(v) =
/// union(template_param_usage(w) for w in successors(v))
/// ```
///
/// Note that we ignore certain edges in the graph, such as edges from a
/// template declaration to its template parameters' definitions for this
/// analysis. If we didn't, then we would mistakenly determine that ever
/// template parameter is always used.
///
/// The final wrinkle is handling of blocklisted types. Normally, we say that
/// the set of allowlisted items is the transitive closure of items explicitly
/// called out for allowlisting, *without* any items explicitly called out as
/// blocklisted. However, for the purposes of this analysis's correctness, we
/// simplify and consider run the analysis on the full transitive closure of
/// allowlisted items. We do, however, treat instantiations of blocklisted items
/// specially; see `constrain_instantiation_of_blocklisted_template` and its
/// documentation for details.
#[derive(Debug, Clone)]
pub struct UsedTemplateParameters<'ctx> {
ctx: &'ctx BindgenContext,
// The Option is only there for temporary moves out of the hash map. See the
// comments in `UsedTemplateParameters::constrain` below.
used: HashMap<ItemId, Option<ItemSet>>,
dependencies: HashMap<ItemId, Vec<ItemId>>,
// The set of allowlisted items, without any blocklisted items reachable
// from the allowlisted items which would otherwise be considered
// allowlisted as well.
allowlisted_items: HashSet<ItemId>,
}
impl<'ctx> UsedTemplateParameters<'ctx> {
fn consider_edge(kind: EdgeKind) -> bool {
match kind {
// For each of these kinds of edges, if the referent uses a template
// parameter, then it should be considered that the origin of the
// edge also uses the template parameter.
EdgeKind::TemplateArgument |
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::Constructor |
EdgeKind::Destructor |
EdgeKind::VarType |
EdgeKind::FunctionReturn |
EdgeKind::FunctionParameter |
EdgeKind::TypeReference => true,
// An inner var or type using a template parameter is orthogonal
// from whether we use it. See template-param-usage-{6,11}.hpp.
EdgeKind::InnerVar | EdgeKind::InnerType => false,
// We can't emit machine code for new monomorphizations of class
// templates' methods (and don't detect explicit instantiations) so
// we must ignore template parameters that are only used by
// methods. This doesn't apply to a function type's return or
// parameter types, however, because of type aliases of function
// pointers that use template parameters, eg
// tests/headers/struct_with_typedef_template_arg.hpp
EdgeKind::Method => false,
// If we considered these edges, we would end up mistakenly claiming
// that every template parameter always used.
EdgeKind::TemplateDeclaration |
EdgeKind::TemplateParameterDefinition => false,
// Since we have to be careful about which edges we consider for
// this analysis to be correct, we ignore generic edges. We also
// avoid a `_` wild card to force authors of new edge kinds to
// determine whether they need to be considered by this analysis.
EdgeKind::Generic => false,
}
}
fn take_this_id_usage_set<Id: Into<ItemId>>(
&mut self,
this_id: Id,
) -> ItemSet {
let this_id = this_id.into();
self.used
.get_mut(&this_id)
.expect(
"Should have a set of used template params for every item \
id",
)
.take()
.expect(
"Should maintain the invariant that all used template param \
sets are `Some` upon entry of `constrain`",
)
}
/// We say that blocklisted items use all of their template parameters. The
/// blocklisted type is most likely implemented explicitly by the user,
/// since it won't be in the generated bindings, and we don't know exactly
/// what they'll to with template parameters, but we can push the issue down
/// the line to them.
fn constrain_instantiation_of_blocklisted_template(
&self,
this_id: ItemId,
used_by_this_id: &mut ItemSet,
instantiation: &TemplateInstantiation,
) {
trace!(
" instantiation of blocklisted template, uses all template \
arguments"
);
let args = instantiation
.template_arguments()
.iter()
.map(|a| {
a.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self.ctx)
.id()
})
.filter(|a| *a != this_id)
.flat_map(|a| {
self.used
.get(&a)
.expect("Should have a used entry for the template arg")
.as_ref()
.expect(
"Because a != this_id, and all used template \
param sets other than this_id's are `Some`, \
a's used template param set should be `Some`",
)
.iter()
.cloned()
});
used_by_this_id.extend(args);
}
/// A template instantiation's concrete template argument is only used if
/// the template definition uses the corresponding template parameter.
fn constrain_instantiation(
&self,
this_id: ItemId,
used_by_this_id: &mut ItemSet,
instantiation: &TemplateInstantiation,
) {
trace!(" template instantiation");
let decl = self.ctx.resolve_type(instantiation.template_definition());
let args = instantiation.template_arguments();
let params = decl.self_template_params(self.ctx);
debug_assert!(this_id != instantiation.template_definition());
let used_by_def = self.used
.get(&instantiation.template_definition().into())
.expect("Should have a used entry for instantiation's template definition")
.as_ref()
.expect("And it should be Some because only this_id's set is None, and an \
instantiation's template definition should never be the \
instantiation itself");
for (arg, param) in args.iter().zip(params.iter()) {
trace!(
" instantiation's argument {:?} is used if definition's \
parameter {:?} is used",
arg,
param
);
if used_by_def.contains(¶m.into()) {
trace!(" param is used by template definition");
let arg = arg
.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self.ctx)
.id();
if arg == this_id {
continue;
}
let used_by_arg = self
.used
.get(&arg)
.expect("Should have a used entry for the template arg")
.as_ref()
.expect(
"Because arg != this_id, and all used template \
param sets other than this_id's are `Some`, \
arg's used template param set should be \
`Some`",
)
.iter()
.cloned();
used_by_this_id.extend(used_by_arg);
}
}
}
/// The join operation on our lattice: the set union of all of this id's
/// successors.
fn constrain_join(&self, used_by_this_id: &mut ItemSet, item: &Item) {
trace!(" other item: join with successors' usage");
item.trace(
self.ctx,
&mut |sub_id, edge_kind| {
// Ignore ourselves, since union with ourself is a
// no-op. Ignore edges that aren't relevant to the
// analysis.
if sub_id == item.id() || !Self::consider_edge(edge_kind) {
return;
}
let used_by_sub_id = self
.used
.get(&sub_id)
.expect("Should have a used set for the sub_id successor")
.as_ref()
.expect(
"Because sub_id != id, and all used template \
param sets other than id's are `Some`, \
sub_id's used template param set should be \
`Some`",
)
.iter()
.cloned();
trace!(
" union with {:?}'s usage: {:?}",
sub_id,
used_by_sub_id.clone().collect::<Vec<_>>()
);
used_by_this_id.extend(used_by_sub_id);
},
&(),
);
}
}
impl<'ctx> MonotoneFramework for UsedTemplateParameters<'ctx> {
type Node = ItemId;
type Extra = &'ctx BindgenContext;
type Output = HashMap<ItemId, ItemSet>;
fn new(ctx: &'ctx BindgenContext) -> UsedTemplateParameters<'ctx> {
let mut used = HashMap::default();
let mut dependencies = HashMap::default();
let allowlisted_items: HashSet<_> =
ctx.allowlisted_items().iter().cloned().collect();
let allowlisted_and_blocklisted_items: ItemSet = allowlisted_items
.iter()
.cloned()
.flat_map(|i| {
let mut reachable = vec![i];
i.trace(
ctx,
&mut |s, _| {
reachable.push(s);
},
&(),
);
reachable
})
.collect();
for item in allowlisted_and_blocklisted_items {
dependencies.entry(item).or_insert_with(Vec::new);
used.entry(item).or_insert_with(|| Some(ItemSet::new()));
{
// We reverse our natural IR graph edges to find dependencies
// between nodes.
item.trace(
ctx,
&mut |sub_item: ItemId, _| {
used.entry(sub_item)
.or_insert_with(|| Some(ItemSet::new()));
dependencies
.entry(sub_item)
.or_insert_with(Vec::new)
.push(item);
},
&(),
);
}
// Additionally, whether a template instantiation's template
// arguments are used depends on whether the template declaration's
// generic template parameters are used.
let item_kind =
ctx.resolve_item(item).as_type().map(|ty| ty.kind());
if let Some(&TypeKind::TemplateInstantiation(ref inst)) = item_kind
{
let decl = ctx.resolve_type(inst.template_definition());
let args = inst.template_arguments();
// Although template definitions should always have
// template parameters, there is a single exception:
// opaque templates. Hence the unwrap_or.
let params = decl.self_template_params(ctx);
for (arg, param) in args.iter().zip(params.iter()) {
let arg = arg
.into_resolver()
.through_type_aliases()
.through_type_refs()
.resolve(ctx)
.id();
let param = param
.into_resolver()
.through_type_aliases()
.through_type_refs()
.resolve(ctx)
.id();
used.entry(arg).or_insert_with(|| Some(ItemSet::new()));
used.entry(param).or_insert_with(|| Some(ItemSet::new()));
dependencies
.entry(arg)
.or_insert_with(Vec::new)
.push(param);
}
}
}
if cfg!(feature = "testing_only_extra_assertions") {
// Invariant: The `used` map has an entry for every allowlisted
// item, as well as all explicitly blocklisted items that are
// reachable from allowlisted items.
//
// Invariant: the `dependencies` map has an entry for every
// allowlisted item.
//
// (This is so that every item we call `constrain` on is guaranteed
// to have a set of template parameters, and we can allow
// blocklisted templates to use all of their parameters).
for item in allowlisted_items.iter() {
extra_assert!(used.contains_key(item));
extra_assert!(dependencies.contains_key(item));
item.trace(
ctx,
&mut |sub_item, _| {
extra_assert!(used.contains_key(&sub_item));
extra_assert!(dependencies.contains_key(&sub_item));
},
&(),
)
}
}
UsedTemplateParameters {
ctx,
used,
dependencies,
allowlisted_items,
}
}
fn initial_worklist(&self) -> Vec<ItemId> {
// The transitive closure of all allowlisted items, including explicitly
// blocklisted items.
self.ctx
.allowlisted_items()
.iter()
.cloned()
.flat_map(|i| {
let mut reachable = vec![i];
i.trace(
self.ctx,
&mut |s, _| {
reachable.push(s);
},
&(),
);
reachable
})
.collect()
}
fn constrain(&mut self, id: ItemId) -> ConstrainResult {
// Invariant: all hash map entries' values are `Some` upon entering and
// exiting this method.
extra_assert!(self.used.values().all(|v| v.is_some()));
// Take the set for this id out of the hash map while we mutate it based
// on other hash map entries. We *must* put it back into the hash map at
// the end of this method. This allows us to side-step HashMap's lack of
// an analog to slice::split_at_mut.
let mut used_by_this_id = self.take_this_id_usage_set(id);
trace!("constrain {:?}", id);
trace!(" initially, used set is {:?}", used_by_this_id);
let original_len = used_by_this_id.len();
let item = self.ctx.resolve_item(id);
let ty_kind = item.as_type().map(|ty| ty.kind());
match ty_kind {
// Named template type parameters trivially use themselves.
Some(&TypeKind::TypeParam) => {
trace!(" named type, trivially uses itself");
used_by_this_id.insert(id);
}
// Template instantiations only use their template arguments if the
// template definition uses the corresponding template parameter.
Some(&TypeKind::TemplateInstantiation(ref inst)) => {
if self
.allowlisted_items
.contains(&inst.template_definition().into())
{
self.constrain_instantiation(
id,
&mut used_by_this_id,
inst,
);
} else {
self.constrain_instantiation_of_blocklisted_template(
id,
&mut used_by_this_id,
inst,
);
}
}
// Otherwise, add the union of each of its referent item's template
// parameter usage.
_ => self.constrain_join(&mut used_by_this_id, item),
}
trace!(" finally, used set is {:?}", used_by_this_id);
let new_len = used_by_this_id.len();
assert!(
new_len >= original_len,
"This is the property that ensures this function is monotone -- \
if it doesn't hold, the analysis might never terminate!"
);
// Put the set back in the hash map and restore our invariant.
debug_assert!(self.used[&id].is_none());
self.used.insert(id, Some(used_by_this_id));
extra_assert!(self.used.values().all(|v| v.is_some()));
if new_len != original_len {
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
fn each_depending_on<F>(&self, item: ItemId, mut f: F)
where
F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&item) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}
impl<'ctx> From<UsedTemplateParameters<'ctx>> for HashMap<ItemId, ItemSet> {
fn from(used_templ_params: UsedTemplateParameters<'ctx>) -> Self {
used_templ_params
.used
.into_iter()
.map(|(k, v)| (k, v.unwrap()))
.collect()
}
}