symphonia_core/checksum/
md5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

use std::cmp;

use crate::io::Monitor;

fn transform(state: &mut [u32; 4], buf: &[u8]) {
    // Assert to hopefully force the compiler to elide bounds checks on buf.
    assert!(buf.len() == 64);

    let mut input = [0u32; 16];

    // Collect 4 bytes from an input buffer and store as a u32 in the output buffer. Note: input
    // bytes are considered little-endian for MD5.
    macro_rules! collect {
        ($output:ident, $input:ident, $idx:expr) => {
            $output[$idx] = u32::from_le_bytes([
                $input[$idx * 4 + 0],
                $input[$idx * 4 + 1],
                $input[$idx * 4 + 2],
                $input[$idx * 4 + 3],
            ]);
        };
    }

    collect!(input, buf, 0);
    collect!(input, buf, 1);
    collect!(input, buf, 2);
    collect!(input, buf, 3);
    collect!(input, buf, 4);
    collect!(input, buf, 5);
    collect!(input, buf, 6);
    collect!(input, buf, 7);
    collect!(input, buf, 8);
    collect!(input, buf, 9);
    collect!(input, buf, 10);
    collect!(input, buf, 11);
    collect!(input, buf, 12);
    collect!(input, buf, 13);
    collect!(input, buf, 14);
    collect!(input, buf, 15);

    // The transformation for a single step of a round: A = B + ROTL32(F + A + K[i] + M[g], S).
    macro_rules! round_step {
        ($a:ident, $b:ident, $f:expr, $m:expr, $s:expr, $k:expr) => {
            $a = $f.wrapping_add($a).wrapping_add($k).wrapping_add($m);
            $a = $b.wrapping_add($a.rotate_left($s));
        };
    }

    let mut a = state[0];
    let mut b = state[1];
    let mut c = state[2];
    let mut d = state[3];

    // Round 1: F(B, C, D) = D xor (B and (C xor D))
    {
        macro_rules! T {
            ($a:ident, $b:ident, $c:ident, $d:ident, $m:expr, $s:expr, $k:expr) => {
                round_step!($a, $b, $d ^ ($b & ($c ^ $d)), $m, $s, $k);
            };
        }

        T!(a, b, c, d, input[0], 7, 0xd76aa478);
        T!(d, a, b, c, input[1], 12, 0xe8c7b756);
        T!(c, d, a, b, input[2], 17, 0x242070db);
        T!(b, c, d, a, input[3], 22, 0xc1bdceee);
        T!(a, b, c, d, input[4], 7, 0xf57c0faf);
        T!(d, a, b, c, input[5], 12, 0x4787c62a);
        T!(c, d, a, b, input[6], 17, 0xa8304613);
        T!(b, c, d, a, input[7], 22, 0xfd469501);
        T!(a, b, c, d, input[8], 7, 0x698098d8);
        T!(d, a, b, c, input[9], 12, 0x8b44f7af);
        T!(c, d, a, b, input[10], 17, 0xffff5bb1);
        T!(b, c, d, a, input[11], 22, 0x895cd7be);
        T!(a, b, c, d, input[12], 7, 0x6b901122);
        T!(d, a, b, c, input[13], 12, 0xfd987193);
        T!(c, d, a, b, input[14], 17, 0xa679438e);
        T!(b, c, d, a, input[15], 22, 0x49b40821);
    }

    // Round 2: G(B, C, D) = C xor (D and (B xor C))
    {
        macro_rules! T {
            ($a:ident, $b:ident, $c:ident, $d:ident, $m:expr, $s:expr, $k:expr) => {
                round_step!($a, $b, $c ^ ($d & ($b ^ $c)), $m, $s, $k);
            };
        }

        T!(a, b, c, d, input[1], 5, 0xf61e2562);
        T!(d, a, b, c, input[6], 9, 0xc040b340);
        T!(c, d, a, b, input[11], 14, 0x265e5a51);
        T!(b, c, d, a, input[0], 20, 0xe9b6c7aa);
        T!(a, b, c, d, input[5], 5, 0xd62f105d);
        T!(d, a, b, c, input[10], 9, 0x02441453);
        T!(c, d, a, b, input[15], 14, 0xd8a1e681);
        T!(b, c, d, a, input[4], 20, 0xe7d3fbc8);
        T!(a, b, c, d, input[9], 5, 0x21e1cde6);
        T!(d, a, b, c, input[14], 9, 0xc33707d6);
        T!(c, d, a, b, input[3], 14, 0xf4d50d87);
        T!(b, c, d, a, input[8], 20, 0x455a14ed);
        T!(a, b, c, d, input[13], 5, 0xa9e3e905);
        T!(d, a, b, c, input[2], 9, 0xfcefa3f8);
        T!(c, d, a, b, input[7], 14, 0x676f02d9);
        T!(b, c, d, a, input[12], 20, 0x8d2a4c8a);
    }

    // Round 3: H(B, C, D) = B xor C xor D
    {
        macro_rules! T {
            ($a:ident, $b:ident, $c:ident, $d:ident, $m:expr, $s:expr, $k:expr) => {
                round_step!($a, $b, $b ^ $c ^ $d, $m, $s, $k);
            };
        }

        T!(a, b, c, d, input[5], 4, 0xfffa3942);
        T!(d, a, b, c, input[8], 11, 0x8771f681);
        T!(c, d, a, b, input[11], 16, 0x6d9d6122);
        T!(b, c, d, a, input[14], 23, 0xfde5380c);
        T!(a, b, c, d, input[1], 4, 0xa4beea44);
        T!(d, a, b, c, input[4], 11, 0x4bdecfa9);
        T!(c, d, a, b, input[7], 16, 0xf6bb4b60);
        T!(b, c, d, a, input[10], 23, 0xbebfbc70);
        T!(a, b, c, d, input[13], 4, 0x289b7ec6);
        T!(d, a, b, c, input[0], 11, 0xeaa127fa);
        T!(c, d, a, b, input[3], 16, 0xd4ef3085);
        T!(b, c, d, a, input[6], 23, 0x04881d05);
        T!(a, b, c, d, input[9], 4, 0xd9d4d039);
        T!(d, a, b, c, input[12], 11, 0xe6db99e5);
        T!(c, d, a, b, input[15], 16, 0x1fa27cf8);
        T!(b, c, d, a, input[2], 23, 0xc4ac5665);
    }

    // Round 4: I(B,C,D) = C xor (B or (not D))
    {
        macro_rules! T {
            ($a:ident, $b:ident, $c:ident, $d:ident, $m:expr, $s:expr, $k:expr) => {
                round_step!($a, $b, $c ^ ($b | !$d), $m, $s, $k);
            };
        }

        T!(a, b, c, d, input[0], 6, 0xf4292244);
        T!(d, a, b, c, input[7], 10, 0x432aff97);
        T!(c, d, a, b, input[14], 15, 0xab9423a7);
        T!(b, c, d, a, input[5], 21, 0xfc93a039);
        T!(a, b, c, d, input[12], 6, 0x655b59c3);
        T!(d, a, b, c, input[3], 10, 0x8f0ccc92);
        T!(c, d, a, b, input[10], 15, 0xffeff47d);
        T!(b, c, d, a, input[1], 21, 0x85845dd1);
        T!(a, b, c, d, input[8], 6, 0x6fa87e4f);
        T!(d, a, b, c, input[15], 10, 0xfe2ce6e0);
        T!(c, d, a, b, input[6], 15, 0xa3014314);
        T!(b, c, d, a, input[13], 21, 0x4e0811a1);
        T!(a, b, c, d, input[4], 6, 0xf7537e82);
        T!(d, a, b, c, input[11], 10, 0xbd3af235);
        T!(c, d, a, b, input[2], 15, 0x2ad7d2bb);
        T!(b, c, d, a, input[9], 21, 0xeb86d391);
    }

    state[0] = state[0].wrapping_add(a);
    state[1] = state[1].wrapping_add(b);
    state[2] = state[2].wrapping_add(c);
    state[3] = state[3].wrapping_add(d);
}

/// `Md5` implements the MD5 hashing algorithm.
pub struct Md5 {
    state: [u32; 4],
    block: [u8; Md5::BLOCK_LEN],
    len: u64,
}

impl Default for Md5 {
    fn default() -> Self {
        Md5 {
            state: [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476],
            block: [0; Md5::BLOCK_LEN],
            len: 0,
        }
    }
}

impl Md5 {
    const BLOCK_LEN: usize = 64;
    const BLOCK_LEN_MASK: u64 = 0x3f;

    /// Finalizes and returns the computed MD5 hash.
    pub fn md5(&self) -> [u8; 16] {
        // Finalize locally.
        let mut block = [0; Md5::BLOCK_LEN];
        let mut state = self.state;

        // The block length is the amount of data buffered for the current block.
        let block_len = (self.len & Md5::BLOCK_LEN_MASK) as usize;

        // The block length should *always* be less than the MD5 block length if the process_*
        // functions transform the block when it's full.
        assert!(block_len < Md5::BLOCK_LEN);

        // Copy the buffered block data locally for finalization.
        block[..block_len].copy_from_slice(&self.block[..block_len]);

        // Append the message terminator to the block.
        block[block_len] = 0x80;

        // If the message length can not be appended to the block, transform the block, and start
        // a new block.
        if Md5::BLOCK_LEN - block_len - 1 < 8 {
            transform(&mut state, &block);
            block = [0; Md5::BLOCK_LEN];
        }

        // The final 8 bytes of the final block contain the message length in bits mod 2^64.
        block[Md5::BLOCK_LEN - 8..Md5::BLOCK_LEN].copy_from_slice(&(self.len << 3).to_le_bytes());
        transform(&mut state, &block);

        // The message digest is in big-endian.
        let mut hash = [0; 16];
        hash[0..4].copy_from_slice(&state[0].to_le_bytes());
        hash[4..8].copy_from_slice(&state[1].to_le_bytes());
        hash[8..12].copy_from_slice(&state[2].to_le_bytes());
        hash[12..16].copy_from_slice(&state[3].to_le_bytes());
        hash
    }
}

impl Monitor for Md5 {
    #[inline(always)]
    fn process_byte(&mut self, byte: u8) {
        self.block[(self.len & Md5::BLOCK_LEN_MASK) as usize] = byte;
        self.len += 1;

        // Atleast 1 bytes has been written (see above) and the length is a multiple of the MD5
        // block length, therefore the current block is full. Perform a MD5 transformation on the
        // current block.
        if self.len & Md5::BLOCK_LEN_MASK == 0 {
            transform(&mut self.state, &self.block);
        }
    }

    #[inline(always)]
    fn process_buf_bytes(&mut self, buf: &[u8]) {
        let mut rem = buf;

        while !rem.is_empty() {
            let block_len = (self.len & Md5::BLOCK_LEN_MASK) as usize;

            let copy_len = cmp::min(rem.len(), Md5::BLOCK_LEN - block_len);

            self.len += copy_len as u64;

            // If the copy length is a whole block then perform the transformation directly from the
            // source buffer.
            if copy_len == Md5::BLOCK_LEN {
                transform(&mut self.state, &rem[..copy_len]);
            }
            else {
                // If the copy length is less than a whole block, buffer it into the current block.
                self.block[block_len..block_len + copy_len].copy_from_slice(&rem[..copy_len]);

                if self.len & Md5::BLOCK_LEN_MASK == 0 {
                    transform(&mut self.state, &self.block);
                }
            }

            rem = &rem[copy_len..];
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Md5;
    use super::Monitor;

    #[test]
    fn verify_md5() {
        const STRINGS: [&[u8]; 8] = [
            b"",
            b"a",
            b"abc",
            b"The quick brown fox jumps over the lazy dog",
            b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
            b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789!",
            b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789!?",
            b".s)cyIl?XKs}wDnLEUeZj'72=A/0!w;B[e*QUh)0{&XcGvf'xMx5Chhx_'ahg{GP|_R(0=Xe`lXQN_@MK9::",
        ];

        #[rustfmt::skip]
        const HASHES: [[u8; 16]; 8] = [
            [
                0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
                0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
            ],
            [
                0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8,
                0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61,
            ],
            [
                0x90, 0x01, 0x50, 0x98, 0x3c, 0xd2, 0x4f, 0xb0,
                0xd6, 0x96, 0x3f, 0x7d, 0x28, 0xe1, 0x7f, 0x72,
            ],
            [
                0x9e, 0x10, 0x7d, 0x9d, 0x37, 0x2b, 0xb6, 0x82,
                0x6b, 0xd8, 0x1d, 0x35, 0x42, 0xa4, 0x19, 0xd6,
            ],
            [
                0xd1, 0x74, 0xab, 0x98, 0xd2, 0x77, 0xd9, 0xf5,
                0xa5, 0x61, 0x1c, 0x2c, 0x9f, 0x41, 0x9d, 0x9f,
            ],
            [
                0x64, 0x1b, 0xa6, 0x02, 0x88, 0xc1, 0x7a, 0x2d,
                0xa5, 0x09, 0x00, 0x77, 0xeb, 0x89, 0x58, 0xad,
            ],
            [
                0x0a, 0x71, 0xdb, 0x4d, 0xf3, 0x50, 0x92, 0x73,
                0x62, 0x42, 0x3a, 0x42, 0xdc, 0xf8, 0x14, 0x57,
            ],
            [
                0x0b, 0x76, 0x74, 0x7e, 0xfd, 0xcd, 0xb9, 0x33,
                0x67, 0xfe, 0x2d, 0xa3, 0x21, 0x1b, 0x5d, 0x41,
            ],
        ];

        // As a buffer.
        for (string, hash) in STRINGS.iter().zip(&HASHES) {
            let mut md5: Md5 = Default::default();

            md5.process_buf_bytes(string);

            assert_eq!(*hash, md5.md5());
        }

        // As partial buffers.
        for (string, hash) in STRINGS.iter().zip(&HASHES) {
            let mut md5: Md5 = Default::default();

            for bytes in string.chunks(21) {
                md5.process_buf_bytes(bytes);
            }

            assert_eq!(*hash, md5.md5());
        }

        // Byte-by-byte
        for (string, hash) in STRINGS.iter().zip(&HASHES) {
            let mut md5: Md5 = Default::default();

            for byte in string.iter() {
                md5.process_byte(*byte);
            }

            assert_eq!(*hash, md5.md5());
        }
    }
}