nalgebra/geometry/point.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::One;
use std::cmp::Ordering;
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::simd::SimdPartialOrd;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::iter::{MatrixIter, MatrixIterMut};
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
use std::mem::MaybeUninit;
/// A point in an euclidean space.
///
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/docs/user_guide/points_and_transformations)
/// for details on the distinction. The most notable difference that vectors ignore translations.
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
/// transform points by applying a rotation and a translation on them. However, these isometries
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
/// the isometry is ignored).
///
/// # Construction
/// * [From individual components <span style="float:right;">`new`…</span>](#construction-from-individual-components)
/// * [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
/// * [Other construction methods <span style="float:right;">`origin`, `from_slice`, `from_homogeneous`…</span>](#other-construction-methods)
///
/// # Transformation
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
/// of said transformations for details.
#[repr(C)]
#[derive(Clone)]
pub struct OPoint<T: Scalar, D: DimName>
where
DefaultAllocator: Allocator<T, D>,
{
/// The coordinates of this point, i.e., the shift from the origin.
pub coords: OVector<T, D>,
}
impl<T: Scalar + fmt::Debug, D: DimName> fmt::Debug for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.coords.as_slice().fmt(formatter)
}
}
impl<T: Scalar + hash::Hash, D: DimName> hash::Hash for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<T: Scalar + Copy, D: DimName> Copy for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
OVector<T, D>: Copy,
{
}
#[cfg(all(not(target_os = "cuda"), feature = "cuda"))]
unsafe impl<T: Scalar + cust::memory::DeviceCopy, D: DimName> cust::memory::DeviceCopy
for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
OVector<T, D>: cust::memory::DeviceCopy,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Zeroable for OPoint<T, D>
where
OVector<T, D>: bytemuck::Zeroable,
DefaultAllocator: Allocator<T, D>,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Pod for OPoint<T, D>
where
T: Copy,
OVector<T, D>: bytemuck::Pod,
DefaultAllocator: Allocator<T, D>,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar, D: DimName> Serialize for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, D: DimName> Deserialize<'a> for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let coords = OVector::<T, D>::deserialize(deserializer)?;
Ok(Self::from(coords))
}
}
#[cfg(feature = "abomonation-serialize")]
impl<T, D: DimName> Abomonation for OPoint<T, D>
where
T: Scalar,
OVector<T, D>: Abomonation,
DefaultAllocator: Allocator<T, D>,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.coords.entomb(writer)
}
fn extent(&self) -> usize {
self.coords.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.coords.exhume(bytes)
}
}
impl<T: Scalar, D: DimName> OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
/// Returns a point containing the result of `f` applied to each of its entries.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let p = Point3::new(1.1, 2.1, 3.1);
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
/// ```
#[inline]
#[must_use]
pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> OPoint<T2, D>
where
DefaultAllocator: Allocator<T2, D>,
{
self.coords.map(f).into()
}
/// Replaces each component of `self` by the result of a closure `f` applied on it.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let mut p = Point2::new(1.0, 2.0);
/// p.apply(|e| *e = *e * 10.0);
/// assert_eq!(p, Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let mut p = Point3::new(1.0, 2.0, 3.0);
/// p.apply(|e| *e = *e * 10.0);
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn apply<F: FnMut(&mut T)>(&mut self, f: F) {
self.coords.apply(f)
}
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
/// end of it.
///
/// This is the same as `.into()`.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
/// let p = Point2::new(10.0, 20.0);
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<D, U1>>
where
T: One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
{
// TODO: this is mostly a copy-past from Vector::push.
// But we can’t use Vector::push because of the DimAdd bound
// (which we don’t use because we use DimNameAdd).
// We should find a way to re-use Vector::push.
let len = self.len();
let mut res = crate::Matrix::uninit(DimNameSum::<D, U1>::name(), Const::<1>);
// This is basically a copy_from except that we warp the copied
// values into MaybeUninit.
res.generic_slice_mut((0, 0), self.coords.shape_generic())
.zip_apply(&self.coords, |out, e| *out = MaybeUninit::new(e));
res[(len, 0)] = MaybeUninit::new(T::one());
// Safety: res has been fully initialized.
unsafe { res.assume_init() }
}
/// Creates a new point with the given coordinates.
#[deprecated(note = "Use Point::from(vector) instead.")]
#[inline]
pub fn from_coordinates(coords: OVector<T, D>) -> Self {
Self { coords }
}
/// The dimension of this point.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.len(), 2);
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.len(), 3);
/// ```
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.coords.len()
}
/// Returns true if the point contains no elements.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert!(!p.is_empty());
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// The stride of this point. This is the number of buffer element separating each component of
/// this point.
#[inline]
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
pub fn stride(&self) -> usize {
self.coords.strides().0
}
/// Iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let p = Point3::new(1.0, 2.0, 3.0);
/// let mut it = p.iter().cloned();
///
/// assert_eq!(it.next(), Some(1.0));
/// assert_eq!(it.next(), Some(2.0));
/// assert_eq!(it.next(), Some(3.0));
/// assert_eq!(it.next(), None);
#[inline]
pub fn iter(
&self,
) -> MatrixIter<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
self.coords.iter()
}
/// Gets a reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
pub unsafe fn get_unchecked(&self, i: usize) -> &T {
self.coords.vget_unchecked(i)
}
/// Mutably iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let mut p = Point3::new(1.0, 2.0, 3.0);
///
/// for e in p.iter_mut() {
/// *e *= 10.0;
/// }
///
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
#[inline]
pub fn iter_mut(
&mut self,
) -> MatrixIterMut<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
self.coords.iter_mut()
}
/// Gets a mutable reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
self.coords.vget_unchecked_mut(i)
}
/// Swaps two entries without bound-checking.
#[inline]
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
self.coords.swap_unchecked((i1, 0), (i2, 0))
}
}
impl<T: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.coords.abs_diff_eq(&other.coords, epsilon)
}
}
impl<T: Scalar + RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.coords
.relative_eq(&other.coords, epsilon, max_relative)
}
}
impl<T: Scalar + UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
}
}
impl<T: Scalar + Eq, D: DimName> Eq for OPoint<T, D> where DefaultAllocator: Allocator<T, D> {}
impl<T: Scalar, D: DimName> PartialEq for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.coords == right.coords
}
}
impl<T: Scalar + PartialOrd, D: DimName> PartialOrd for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.coords.partial_cmp(&other.coords)
}
#[inline]
fn lt(&self, right: &Self) -> bool {
self.coords.lt(&right.coords)
}
#[inline]
fn le(&self, right: &Self) -> bool {
self.coords.le(&right.coords)
}
#[inline]
fn gt(&self, right: &Self) -> bool {
self.coords.gt(&right.coords)
}
#[inline]
fn ge(&self, right: &Self) -> bool {
self.coords.ge(&right.coords)
}
}
/*
* inf/sup
*/
impl<T: Scalar + SimdPartialOrd, D: DimName> OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
/// Computes the infimum (aka. componentwise min) of two points.
#[inline]
#[must_use]
pub fn inf(&self, other: &Self) -> OPoint<T, D> {
self.coords.inf(&other.coords).into()
}
/// Computes the supremum (aka. componentwise max) of two points.
#[inline]
#[must_use]
pub fn sup(&self, other: &Self) -> OPoint<T, D> {
self.coords.sup(&other.coords).into()
}
/// Computes the (infimum, supremum) of two points.
#[inline]
#[must_use]
pub fn inf_sup(&self, other: &Self) -> (OPoint<T, D>, OPoint<T, D>) {
let (inf, sup) = self.coords.inf_sup(&other.coords);
(inf.into(), sup.into())
}
}
/*
*
* Display
*
*/
impl<T: Scalar + fmt::Display, D: DimName> fmt::Display for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{{")?;
let mut it = self.coords.iter();
write!(f, "{}", *it.next().unwrap())?;
for comp in it {
write!(f, ", {}", *comp)?;
}
write!(f, "}}")
}
}