symphonia_core/dsp/mdct/
no_simd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Symphonia
// Copyright (c) 2019-2023 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

//! The Modified Discrete Cosine Transform (MDCT) implemented without SIMD optimizations.

use crate::dsp::complex::Complex;
use crate::dsp::fft::*;

/// The Inverse Modified Discrete Transform (IMDCT).
pub struct Imdct {
    fft: Fft,
    fft_in: Box<[Complex]>,
    fft_out: Box<[Complex]>,
    twiddle: Box<[Complex]>,
}

impl Imdct {
    /// Instantiate a N-point IMDCT with no scaling.
    ///
    /// The value of `n` is the number of spectral samples and must be a power-of-2 and less-than or
    /// equal to `2 * Fft::MAX_SIZE`.
    pub fn new(n: usize) -> Self {
        Imdct::new_scaled(n, 1.0)
    }

    /// Instantiate a N-point IMDCT with scaling.
    ///
    /// The value of `n` is the number of spectral samples and must be a power-of-2 and less-than or
    /// equal to `2 * Fft::MAX_SIZE`.
    pub fn new_scaled(n: usize, scale: f64) -> Self {
        // The FFT requires a power-of-two N.
        assert!(n.is_power_of_two(), "n must be a power of two");
        // A complex FFT of size N/2 is used to compute the IMDCT. Therefore, the maximum value of N
        // is 2 * Fft::MAX_SIZE.
        assert!(n <= 2 * Fft::MAX_SIZE, "maximum size exceeded");

        let n2 = n / 2;
        let mut twiddle = Vec::with_capacity(n2);

        let alpha = 1.0 / 8.0 + if scale.is_sign_positive() { 0.0 } else { n2 as f64 };
        let pi_n = std::f64::consts::PI / n as f64;
        let sqrt_scale = scale.abs().sqrt();

        for k in 0..n2 {
            let theta = pi_n * (alpha + k as f64);
            let re = sqrt_scale * theta.cos();
            let im = sqrt_scale * theta.sin();
            twiddle.push(Complex::new(re as f32, im as f32));
        }

        let fft_in = vec![Default::default(); n2].into_boxed_slice();
        let fft_out = vec![Default::default(); n2].into_boxed_slice();

        Imdct { fft: Fft::new(n2), fft_in, fft_out, twiddle: twiddle.into_boxed_slice() }
    }

    /// Performs the the N-point Inverse Modified Discrete Cosine Transform.
    ///
    /// The number of input spectral samples provided by the slice `spec` must equal the value of N
    /// that the IMDCT was instantiated with. The length of the output slice, `out`, must be of
    /// length 2N. Failing to meet these requirements will throw an assertion.
    pub fn imdct(&mut self, spec: &[f32], out: &mut [f32]) {
        // Spectral length: 2x FFT size, 0.5x output length.
        let n = self.fft.size() << 1;
        // 1x FFT size, 0.25x output length.
        let n2 = n >> 1;
        // 0.5x FFT size.
        let n4 = n >> 2;

        // The spectrum length must be the same as N.
        assert_eq!(spec.len(), n);
        // The output length must be 2x the spectrum length.
        assert_eq!(out.len(), 2 * n);

        // Pre-FFT twiddling and packing of the real input signal values into complex signal values.
        for (i, (&w, t)) in self.twiddle.iter().zip(self.fft_in.iter_mut()).enumerate() {
            let even = spec[i * 2];
            let odd = -spec[n - 1 - i * 2];

            let re = odd * w.im - even * w.re;
            let im = odd * w.re + even * w.im;
            *t = Complex::new(re, im);
        }

        // Do the FFT.
        self.fft.fft(&self.fft_in, &mut self.fft_out);

        // Split the output vector (2N samples) into 4 vectors (N/2 samples each).
        let (vec0, vec1) = out.split_at_mut(n2);
        let (vec1, vec2) = vec1.split_at_mut(n2);
        let (vec2, vec3) = vec2.split_at_mut(n2);

        // Post-FFT twiddling and processing to expand the N/2 complex output values into 2N real
        // output samples.
        for (i, (x, &w)) in self.fft_out[..n4].iter().zip(self.twiddle[..n4].iter()).enumerate() {
            // The real and imaginary components of the post-twiddled FFT samples are used to
            // generate 4 reak output samples. Using the first half of the complex FFT output,
            // populate each of the 4 output vectors.
            let val = w * x.conj();

            // Forward and reverse order indicies that will be populated.
            let fi = 2 * i;
            let ri = n2 - 1 - 2 * i;

            // The odd indicies in vec0 are populated reverse order.
            vec0[ri] = -val.im;
            // The even indicies in vec1 are populated forward order.
            vec1[fi] = val.im;
            // The odd indicies in vec2 are populated reverse order.
            vec2[ri] = val.re;
            // The even indicies in vec3 are populated forward order.
            vec3[fi] = val.re;
        }

        for (i, (x, &w)) in self.fft_out[n4..].iter().zip(self.twiddle[n4..].iter()).enumerate() {
            // Using the second half of the FFT output samples, finish populating each of the 4
            // output vectors.
            let val = w * x.conj();

            // Forward and reverse order indicies that will be populated.
            let fi = 2 * i;
            let ri = n2 - 1 - 2 * i;

            // The even indicies in vec0 are populated in forward order.
            vec0[fi] = -val.re;
            // The odd indicies in vec1 are populated in reverse order.
            vec1[ri] = val.re;
            // The even indicies in vec2 are populated in forward order.
            vec2[fi] = val.im;
            // The odd indicies in vec3 are populated in reverse order.
            vec3[ri] = val.im;
        }

        // Note: As of Rust 1.58, there doesn't appear to be any measurable difference between using
        // iterators or indexing like above. Either the bounds checks are elided above, or they are
        // not elided using iterators. Therefore, for clarity, the indexing method is used.
        //
        // Additionally, note that vectors 0 and 3 are reversed copies (+ negation for vector 0) of
        // vectors 1 and 2, respectively. Pulling these copies out into a separate loop using
        // iterators yielded no measureable difference either.
    }
}