egui_extras/
sizing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use egui::Rangef;

/// Size hint for table column/strip cell.
#[derive(Clone, Debug, Copy)]
pub enum Size {
    /// Absolute size in points, with a given range of allowed sizes to resize within.
    Absolute { initial: f32, range: Rangef },

    /// Relative size relative to all available space.
    Relative { fraction: f32, range: Rangef },

    /// Multiple remainders each get the same space.
    Remainder { range: Rangef },
}

impl Size {
    /// Exactly this big, with no room for resize.
    pub fn exact(points: f32) -> Self {
        Self::Absolute {
            initial: points,
            range: Rangef::new(points, points),
        }
    }

    /// Initially this big, but can resize.
    pub fn initial(points: f32) -> Self {
        Self::Absolute {
            initial: points,
            range: Rangef::new(0.0, f32::INFINITY),
        }
    }

    /// Relative size relative to all available space. Values must be in range `0.0..=1.0`.
    pub fn relative(fraction: f32) -> Self {
        debug_assert!(0.0 <= fraction && fraction <= 1.0);
        Self::Relative {
            fraction,
            range: Rangef::new(0.0, f32::INFINITY),
        }
    }

    /// Multiple remainders each get the same space.
    pub fn remainder() -> Self {
        Self::Remainder {
            range: Rangef::new(0.0, f32::INFINITY),
        }
    }

    /// Won't shrink below this size (in points).
    #[inline]
    pub fn at_least(mut self, minimum: f32) -> Self {
        self.range_mut().min = minimum;
        self
    }

    /// Won't grow above this size (in points).
    #[inline]
    pub fn at_most(mut self, maximum: f32) -> Self {
        self.range_mut().max = maximum;
        self
    }

    #[inline]
    pub fn with_range(mut self, range: Rangef) -> Self {
        *self.range_mut() = range;
        self
    }

    /// Allowed range of movement (in points), if in a resizable [`Table`](crate::table::Table).
    pub fn range(self) -> Rangef {
        match self {
            Self::Absolute { range, .. }
            | Self::Relative { range, .. }
            | Self::Remainder { range, .. } => range,
        }
    }

    pub fn range_mut(&mut self) -> &mut Rangef {
        match self {
            Self::Absolute { range, .. }
            | Self::Relative { range, .. }
            | Self::Remainder { range, .. } => range,
        }
    }

    #[inline]
    pub fn is_absolute(&self) -> bool {
        matches!(self, Self::Absolute { .. })
    }

    #[inline]
    pub fn is_relative(&self) -> bool {
        matches!(self, Self::Relative { .. })
    }

    #[inline]
    pub fn is_remainder(&self) -> bool {
        matches!(self, Self::Remainder { .. })
    }
}

#[derive(Clone, Default)]
pub struct Sizing {
    pub(crate) sizes: Vec<Size>,
}

impl Sizing {
    pub fn add(&mut self, size: Size) {
        self.sizes.push(size);
    }

    pub fn to_lengths(&self, length: f32, spacing: f32) -> Vec<f32> {
        if self.sizes.is_empty() {
            return vec![];
        }

        let mut num_remainders = 0;
        let sum_non_remainder = self
            .sizes
            .iter()
            .map(|&size| match size {
                Size::Absolute { initial, .. } => initial,
                Size::Relative { fraction, range } => {
                    assert!(0.0 <= fraction && fraction <= 1.0);
                    range.clamp(length * fraction)
                }
                Size::Remainder { .. } => {
                    num_remainders += 1;
                    0.0
                }
            })
            .sum::<f32>()
            + spacing * (self.sizes.len() - 1) as f32;

        let avg_remainder_length = if num_remainders == 0 {
            0.0
        } else {
            let mut remainder_length = length - sum_non_remainder;
            let avg_remainder_length = 0.0f32.max(remainder_length / num_remainders as f32).floor();
            for &size in &self.sizes {
                if let Size::Remainder { range } = size {
                    if avg_remainder_length < range.min {
                        remainder_length -= range.min;
                        num_remainders -= 1;
                    }
                }
            }
            if num_remainders > 0 {
                0.0f32.max(remainder_length / num_remainders as f32)
            } else {
                0.0
            }
        };

        self.sizes
            .iter()
            .map(|&size| match size {
                Size::Absolute { initial, .. } => initial,
                Size::Relative { fraction, range } => range.clamp(length * fraction),
                Size::Remainder { range } => range.clamp(avg_remainder_length),
            })
            .collect()
    }
}

impl From<Vec<Size>> for Sizing {
    fn from(sizes: Vec<Size>) -> Self {
        Self { sizes }
    }
}

#[test]
fn test_sizing() {
    let sizing: Sizing = vec![].into();
    assert_eq!(sizing.to_lengths(50.0, 0.0), Vec::<f32>::new());

    let sizing: Sizing = vec![Size::remainder().at_least(20.0), Size::remainder()].into();
    assert_eq!(sizing.to_lengths(50.0, 0.0), vec![25.0, 25.0]);
    assert_eq!(sizing.to_lengths(30.0, 0.0), vec![20.0, 10.0]);
    assert_eq!(sizing.to_lengths(20.0, 0.0), vec![20.0, 0.0]);
    assert_eq!(sizing.to_lengths(10.0, 0.0), vec![20.0, 0.0]);
    assert_eq!(sizing.to_lengths(20.0, 10.0), vec![20.0, 0.0]);
    assert_eq!(sizing.to_lengths(30.0, 10.0), vec![20.0, 0.0]);
    assert_eq!(sizing.to_lengths(40.0, 10.0), vec![20.0, 10.0]);
    assert_eq!(sizing.to_lengths(110.0, 10.0), vec![50.0, 50.0]);

    let sizing: Sizing = vec![Size::relative(0.5).at_least(10.0), Size::exact(10.0)].into();
    assert_eq!(sizing.to_lengths(50.0, 0.0), vec![25.0, 10.0]);
    assert_eq!(sizing.to_lengths(30.0, 0.0), vec![15.0, 10.0]);
    assert_eq!(sizing.to_lengths(20.0, 0.0), vec![10.0, 10.0]);
    assert_eq!(sizing.to_lengths(10.0, 0.0), vec![10.0, 10.0]);
}