nalgebra/linalg/
symmetric_eigen.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};

use approx::AbsDiffEq;
use num::Zero;

use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix2, OMatrix, OVector, SquareMatrix, Vector2};
use crate::dimension::{Dim, DimDiff, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;

use crate::linalg::givens::GivensRotation;
use crate::linalg::SymmetricTridiagonal;

/// Eigendecomposition of a symmetric matrix.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(serialize = "DefaultAllocator: Allocator<T, D, D> +
                           Allocator<T::RealField, D>,
         OVector<T::RealField, D>: Serialize,
         OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(deserialize = "DefaultAllocator: Allocator<T, D, D> +
                           Allocator<T::RealField, D>,
         OVector<T::RealField, D>: Deserialize<'de>,
         OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct SymmetricEigen<T: ComplexField, D: Dim>
where
    DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
{
    /// The eigenvectors of the decomposed matrix.
    pub eigenvectors: OMatrix<T, D, D>,

    /// The unsorted eigenvalues of the decomposed matrix.
    pub eigenvalues: OVector<T::RealField, D>,
}

impl<T: ComplexField, D: Dim> Copy for SymmetricEigen<T, D>
where
    DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
    OMatrix<T, D, D>: Copy,
    OVector<T::RealField, D>: Copy,
{
}

impl<T: ComplexField, D: Dim> SymmetricEigen<T, D>
where
    DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
{
    /// Computes the eigendecomposition of the given symmetric matrix.
    ///
    /// Only the lower-triangular parts (including its diagonal) of `m` is read.
    pub fn new(m: OMatrix<T, D, D>) -> Self
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
    {
        Self::try_new(m, T::RealField::default_epsilon(), 0).unwrap()
    }

    /// Computes the eigendecomposition of the given symmetric matrix with user-specified
    /// convergence parameters.
    ///
    /// Only the lower-triangular part (including its diagonal) of `m` is read.
    ///
    /// # Arguments
    ///
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_new(m: OMatrix<T, D, D>, eps: T::RealField, max_niter: usize) -> Option<Self>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
    {
        Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| SymmetricEigen {
            eigenvectors: vecs.unwrap(),
            eigenvalues: vals,
        })
    }

    fn do_decompose(
        mut matrix: OMatrix<T, D, D>,
        eigenvectors: bool,
        eps: T::RealField,
        max_niter: usize,
    ) -> Option<(OVector<T::RealField, D>, Option<OMatrix<T, D, D>>)>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
    {
        assert!(
            matrix.is_square(),
            "Unable to compute the eigendecomposition of a non-square matrix."
        );
        let dim = matrix.nrows();
        let m_amax = matrix.camax();

        if !m_amax.is_zero() {
            matrix.unscale_mut(m_amax.clone());
        }

        let (mut q_mat, mut diag, mut off_diag);

        if eigenvectors {
            let res = SymmetricTridiagonal::new(matrix).unpack();
            q_mat = Some(res.0);
            diag = res.1;
            off_diag = res.2;
        } else {
            let res = SymmetricTridiagonal::new(matrix).unpack_tridiagonal();
            q_mat = None;
            diag = res.0;
            off_diag = res.1;
        }

        if dim == 1 {
            diag.scale_mut(m_amax);
            return Some((diag, q_mat));
        }

        let mut niter = 0;
        let (mut start, mut end) =
            Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps.clone());

        while end != start {
            let subdim = end - start + 1;

            #[allow(clippy::comparison_chain)]
            if subdim > 2 {
                let m = end - 1;
                let n = end;

                let mut vec = Vector2::new(
                    diag[start].clone()
                        - wilkinson_shift(
                            diag[m].clone().clone(),
                            diag[n].clone(),
                            off_diag[m].clone().clone(),
                        ),
                    off_diag[start].clone(),
                );

                for i in start..n {
                    let j = i + 1;

                    if let Some((rot, norm)) = GivensRotation::cancel_y(&vec) {
                        if i > start {
                            // Not the first iteration.
                            off_diag[i - 1] = norm;
                        }

                        let mii = diag[i].clone();
                        let mjj = diag[j].clone();
                        let mij = off_diag[i].clone();

                        let cc = rot.c() * rot.c();
                        let ss = rot.s() * rot.s();
                        let cs = rot.c() * rot.s();

                        let b = cs.clone() * crate::convert(2.0) * mij.clone();

                        diag[i] = (cc.clone() * mii.clone() + ss.clone() * mjj.clone()) - b.clone();
                        diag[j] = (ss.clone() * mii.clone() + cc.clone() * mjj.clone()) + b;
                        off_diag[i] = cs * (mii - mjj) + mij * (cc - ss);

                        if i != n - 1 {
                            vec.x = off_diag[i].clone();
                            vec.y = -rot.s() * off_diag[i + 1].clone();
                            off_diag[i + 1] *= rot.c();
                        }

                        if let Some(ref mut q) = q_mat {
                            let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
                            rot.inverse().rotate_rows(&mut q.fixed_columns_mut::<2>(i));
                        }
                    } else {
                        break;
                    }
                }

                if off_diag[m].clone().norm1()
                    <= eps.clone() * (diag[m].clone().norm1() + diag[n].clone().norm1())
                {
                    end -= 1;
                }
            } else if subdim == 2 {
                let m = Matrix2::new(
                    diag[start].clone(),
                    off_diag[start].clone().conjugate(),
                    off_diag[start].clone(),
                    diag[start + 1].clone(),
                );
                let eigvals = m.eigenvalues().unwrap();
                let basis = Vector2::new(
                    eigvals.x.clone() - diag[start + 1].clone(),
                    off_diag[start].clone(),
                );

                diag[start] = eigvals[0].clone();
                diag[start + 1] = eigvals[1].clone();

                if let Some(ref mut q) = q_mat {
                    if let Some((rot, _)) =
                        GivensRotation::try_new(basis.x.clone(), basis.y.clone(), eps.clone())
                    {
                        let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
                        rot.rotate_rows(&mut q.fixed_columns_mut::<2>(start));
                    }
                }

                end -= 1;
            }

            // Re-delimit the subproblem in case some decoupling occurred.
            let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps.clone());

            start = sub.0;
            end = sub.1;

            niter += 1;
            if niter == max_niter {
                return None;
            }
        }

        diag.scale_mut(m_amax);

        Some((diag, q_mat))
    }

    fn delimit_subproblem(
        diag: &OVector<T::RealField, D>,
        off_diag: &mut OVector<T::RealField, DimDiff<D, U1>>,
        end: usize,
        eps: T::RealField,
    ) -> (usize, usize)
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<T::RealField, DimDiff<D, U1>>,
    {
        let mut n = end;

        while n > 0 {
            let m = n - 1;

            if off_diag[m].clone().norm1()
                > eps.clone() * (diag[n].clone().norm1() + diag[m].clone().norm1())
            {
                break;
            }

            n -= 1;
        }

        if n == 0 {
            return (0, 0);
        }

        let mut new_start = n - 1;
        while new_start > 0 {
            let m = new_start - 1;

            if off_diag[m].clone().is_zero()
                || off_diag[m].clone().norm1()
                    <= eps.clone() * (diag[new_start].clone().norm1() + diag[m].clone().norm1())
            {
                off_diag[m] = T::RealField::zero();
                break;
            }

            new_start -= 1;
        }

        (new_start, n)
    }

    /// Rebuild the original matrix.
    ///
    /// This is useful if some of the eigenvalues have been manually modified.
    #[must_use]
    pub fn recompose(&self) -> OMatrix<T, D, D> {
        let mut u_t = self.eigenvectors.clone();
        for i in 0..self.eigenvalues.len() {
            let val = self.eigenvalues[i].clone();
            u_t.column_mut(i).scale_mut(val);
        }
        u_t.adjoint_mut();
        &self.eigenvectors * u_t
    }
}

/// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing
/// component `tnn`.
///
/// The inputs are interpreted as the 2x2 matrix:
///     tmm  tmn
///     tmn  tnn
pub fn wilkinson_shift<T: ComplexField>(tmm: T, tnn: T, tmn: T) -> T {
    let sq_tmn = tmn.clone() * tmn;
    if !sq_tmn.is_zero() {
        // We have the guarantee that the denominator won't be zero.
        let d = (tmm - tnn.clone()) * crate::convert(0.5);
        tnn - sq_tmn.clone() / (d.clone() + d.clone().signum() * (d.clone() * d + sq_tmn).sqrt())
    } else {
        tnn
    }
}

/*
 *
 * Computations of eigenvalues for symmetric matrices.
 *
 */
impl<T: ComplexField, D: DimSub<U1>, S: Storage<T, D, D>> SquareMatrix<T, D, S>
where
    DefaultAllocator: Allocator<T, D, D>
        + Allocator<T, DimDiff<D, U1>>
        + Allocator<T::RealField, D>
        + Allocator<T::RealField, DimDiff<D, U1>>,
{
    /// Computes the eigenvalues of this symmetric matrix.
    ///
    /// Only the lower-triangular part of the matrix is read.
    #[must_use]
    pub fn symmetric_eigenvalues(&self) -> OVector<T::RealField, D> {
        SymmetricEigen::do_decompose(
            self.clone_owned(),
            false,
            T::RealField::default_epsilon(),
            0,
        )
        .unwrap()
        .0
    }
}

#[cfg(test)]
mod test {
    use crate::base::Matrix2;

    fn expected_shift(m: Matrix2<f64>) -> f64 {
        let vals = m.eigenvalues().unwrap();

        if (vals.x - m.m22).abs() < (vals.y - m.m22).abs() {
            vals.x
        } else {
            vals.y
        }
    }

    #[cfg(feature = "rand")]
    #[test]
    fn wilkinson_shift_random() {
        for _ in 0..1000 {
            let m = Matrix2::new_random();
            let m = m * m.transpose();

            let expected = expected_shift(m);
            let computed = super::wilkinson_shift(m.m11, m.m22, m.m12);
            assert!(relative_eq!(expected, computed, epsilon = 1.0e-7));
        }
    }

    #[test]
    fn wilkinson_shift_zero() {
        let m = Matrix2::new(0.0, 0.0, 0.0, 0.0);
        assert!(relative_eq!(
            expected_shift(m),
            super::wilkinson_shift(m.m11, m.m22, m.m12)
        ));
    }

    #[test]
    fn wilkinson_shift_zero_diagonal() {
        let m = Matrix2::new(0.0, 42.0, 42.0, 0.0);
        assert!(relative_eq!(
            expected_shift(m),
            super::wilkinson_shift(m.m11, m.m22, m.m12)
        ));
    }

    #[test]
    fn wilkinson_shift_zero_off_diagonal() {
        let m = Matrix2::new(42.0, 0.0, 0.0, 64.0);
        assert!(relative_eq!(
            expected_shift(m),
            super::wilkinson_shift(m.m11, m.m22, m.m12)
        ));
    }

    #[test]
    fn wilkinson_shift_zero_trace() {
        let m = Matrix2::new(42.0, 20.0, 20.0, -42.0);
        assert!(relative_eq!(
            expected_shift(m),
            super::wilkinson_shift(m.m11, m.m22, m.m12)
        ));
    }

    #[test]
    fn wilkinson_shift_zero_diag_diff_and_zero_off_diagonal() {
        let m = Matrix2::new(42.0, 0.0, 0.0, 42.0);
        assert!(relative_eq!(
            expected_shift(m),
            super::wilkinson_shift(m.m11, m.m22, m.m12)
        ));
    }

    #[test]
    fn wilkinson_shift_zero_det() {
        let m = Matrix2::new(2.0, 4.0, 4.0, 8.0);
        assert!(relative_eq!(
            expected_shift(m),
            super::wilkinson_shift(m.m11, m.m22, m.m12)
        ));
    }
}