deflate/length_encode.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
use std::clone::Clone;
use std::iter::Iterator;
/// An enum representing the different types in the run-length encoded data used to encode
/// Huffman table lengths
#[derive(Debug, PartialEq, Eq)]
pub enum EncodedLength {
// An actual length value
Length(u8),
// Copy the previous value n times
CopyPrevious(u8),
// Repeat zero n times (with n represented by 3 bits)
RepeatZero3Bits(u8),
// Repeat zero n times (with n represented by 7 bits)
RepeatZero7Bits(u8),
}
impl EncodedLength {
fn from_prev_and_repeat(prev: u8, repeat: u8) -> EncodedLength {
match prev {
0 => {
if repeat <= 10 {
EncodedLength::RepeatZero3Bits(repeat)
} else {
EncodedLength::RepeatZero7Bits(repeat)
}
}
1..=15 => EncodedLength::CopyPrevious(repeat),
_ => panic!(),
}
}
}
pub const COPY_PREVIOUS: usize = 16;
pub const REPEAT_ZERO_3_BITS: usize = 17;
pub const REPEAT_ZERO_7_BITS: usize = 18;
const MIN_REPEAT: u8 = 3;
/// Push an `EncodedLength` to the vector and update the frequency table.
fn update_out_and_freq(
encoded: EncodedLength,
output: &mut Vec<EncodedLength>,
frequencies: &mut [u16; 19],
) {
let index = match encoded {
EncodedLength::Length(l) => usize::from(l),
EncodedLength::CopyPrevious(_) => COPY_PREVIOUS,
EncodedLength::RepeatZero3Bits(_) => REPEAT_ZERO_3_BITS,
EncodedLength::RepeatZero7Bits(_) => REPEAT_ZERO_7_BITS,
};
frequencies[index] += 1;
output.push(encoded);
}
/// Convenience function to check if the repeat counter should be incremented further
fn not_max_repetitions(length_value: u8, repeats: u8) -> bool {
(length_value == 0 && repeats < 138) || repeats < 6
}
///Convenience version for unit tests.
#[cfg(test)]
pub fn encode_lengths<'a, I>(lengths: I) -> (Vec<EncodedLength>, [u16; 19])
where
I: Iterator<Item = &'a u8> + Clone,
{
let mut freqs = [0u16; 19];
let mut encoded: Vec<EncodedLength> = Vec::new();
encode_lengths_m(lengths, &mut encoded, &mut freqs);
(encoded, freqs)
}
/// Run-length encodes the lengths of the values in `lengths` according to the deflate
/// specification. This is used for writing the code lengths for the Huffman tables for
/// the deflate stream.
///
/// Populates the supplied array with the frequency of the different encoded length values
/// The frequency array is taken as a parameter rather than returned to avoid
/// excessive `memcpy`-ing.
pub fn encode_lengths_m<'a, I>(
lengths: I,
mut out: &mut Vec<EncodedLength>,
mut frequencies: &mut [u16; 19],
) where
I: Iterator<Item = &'a u8> + Clone,
{
out.clear();
// Number of repetitions of the current value
let mut repeat = 0;
let mut iter = lengths.clone().enumerate().peekable();
// Previous value
// We set it to the compliment of the first falue to simplify the code.
let mut prev = !iter.peek().expect("No length values!").1;
while let Some((n, &l)) = iter.next() {
if l == prev && not_max_repetitions(l, repeat) {
repeat += 1;
}
if l != prev || iter.peek().is_none() || !not_max_repetitions(l, repeat) {
if repeat >= MIN_REPEAT {
// The previous value has been repeated enough times to write out a repeat code.
let val = EncodedLength::from_prev_and_repeat(prev, repeat);
update_out_and_freq(val, &mut out, &mut frequencies);
repeat = 0;
// If we have a new length value, output l unless the last value is 0 or l is the
// last byte.
if l != prev {
if l != 0 || iter.peek().is_none() {
update_out_and_freq(EncodedLength::Length(l), &mut out, &mut frequencies);
repeat = 0;
} else {
// If we have a zero, we start repeat at one instead of outputting, as
// there are separate codes for repeats of zero so we don't need a literal
// to define what byte to repeat.
repeat = 1;
}
}
} else {
// There haven't been enough repetitions of the previous value,
// so just we output the lengths directly.
// If we are at the end, and we have a value that is repeated, we need to
// skip a byte and output the last one.
let extra_skip = if iter.peek().is_none() && l == prev {
1
} else {
0
};
// Get to the position of the next byte to output by starting at zero and skipping.
let b_iter = lengths.clone().skip(n + extra_skip - repeat as usize);
// As repeats of zeroes have separate codes, we don't need to output a literal here
// if we have a zero (unless we are at the end).
let extra = if l != 0 || iter.peek().is_none() {
1
} else {
0
};
for &i in b_iter.take(repeat as usize + extra) {
update_out_and_freq(EncodedLength::Length(i), &mut out, &mut frequencies);
}
// If the current byte is zero we start repeat at 1 as we didn't output the literal
// directly.
repeat = 1 - extra as u8;
}
}
prev = l;
}
}
#[cfg(test)]
pub fn huffman_lengths_from_frequency(frequencies: &[u16], max_len: usize) -> Vec<u8> {
in_place::gen_lengths(frequencies, max_len)
}
pub type LeafVec = Vec<in_place::Node>;
/// Generate a set of canonical huffman lengths from the given frequencies, with a maximum length
/// of `max_len`. The lengths are put in the lens slice parameter. Unused lengths are set to 0.
///
/// The leaf buffer is passed in to avoid allocating it every time this function is called.
/// The existing data contained in it is not preserved.
pub fn huffman_lengths_from_frequency_m(
frequencies: &[u16],
max_len: usize,
leaf_buffer: &mut LeafVec,
lens: &mut [u8],
) {
in_place::in_place_lengths(frequencies, max_len, leaf_buffer, lens);
}
mod in_place {
type WeightType = u32;
#[cfg(debug)]
pub fn validate_lengths(lengths: &[u8]) -> bool {
// Avoid issue with floating point on mips: https://github.com/image-rs/deflate-rs/issues/23
if cfg!(any(
target_arch = "mips",
target_arch = "mipsel",
target_arch = "mips64",
target_arch = "mipsel64"
)) {
true
} else {
let v = lengths.iter().fold(0f64, |acc, &n| {
acc + if n != 0 {
2f64.powi(-(i32::from(n)))
} else {
0f64
}
});
match v.partial_cmp(&1.0) {
Some(std::cmp::Ordering::Greater) => false,
_ => true,
}
}
}
#[cfg(not(debug))]
pub fn validate_lengths(_: &[u8]) -> bool {
true
}
#[derive(Eq, PartialEq, Debug)]
pub struct Node {
value: WeightType,
symbol: u16,
}
fn step_1(leaves: &mut [Node]) {
// If there are less than 2 non-zero frequencies, this function should not have been
// called and we should not have gotten to this point.
debug_assert!(leaves.len() >= 2);
let mut root = 0;
let mut leaf = 2;
leaves[0].value += leaves[1].value;
for next in 1..leaves.len() - 1 {
if (leaf >= leaves.len()) || (leaves[root].value < leaves[leaf].value) {
leaves[next].value = leaves[root].value;
leaves[root].value = next as WeightType;
root += 1;
} else {
leaves[next].value = leaves[leaf].value;
leaf += 1;
}
if (leaf >= leaves.len()) || (root < next && (leaves[root].value < leaves[leaf].value))
{
leaves[next].value += leaves[root].value;
leaves[root].value = next as WeightType;
root += 1;
} else {
leaves[next].value += leaves[leaf].value;
leaf += 1;
}
}
}
fn step_2(leaves: &mut [Node]) {
debug_assert!(leaves.len() >= 2);
let n = leaves.len();
leaves[n - 2].value = 0;
for t in (0..(n + 1 - 3)).rev() {
leaves[t].value = leaves[leaves[t].value as usize].value + 1;
}
let mut available = 1_usize;
let mut used = 0;
let mut depth = 0;
let mut root = n as isize - 2;
let mut next = n as isize - 1;
while available > 0 {
while root >= 0 && leaves[root as usize].value == depth {
used += 1;
root -= 1;
}
while available > used {
leaves[next as usize].value = depth;
next -= 1;
available -= 1;
}
available = 2 * used;
depth += 1;
used = 0;
}
}
const MAX_NUMBER_OF_CODES: usize = 32;
const NUM_CODES_LENGTH: usize = MAX_NUMBER_OF_CODES + 1;
/// Checks if any of the lengths exceed `max_len`, and if that is the case, alters the length
/// table so that no codes exceed `max_len`.
/// This is ported from miniz (which is released as public domain by Rich Geldreich
/// https://github.com/richgel999/miniz/blob/master/miniz.c)
///
/// This will not generate optimal (minimim-redundancy) codes, however in most cases
/// this won't make a large difference.
pub fn enforce_max_code_lengths(
num_codes: &mut [u16; NUM_CODES_LENGTH],
num_used: usize,
max_len: usize,
) {
debug_assert!(max_len <= 15);
if num_used > 1 {
let mut num_above_max = 0u16;
for &l in num_codes[(max_len as usize + 1)..].iter() {
num_above_max += l;
}
num_codes[max_len] += num_above_max;
let mut total = 0u32;
for i in (1..=max_len).rev() {
// This should be safe as max_len won't be higher than 15, and num_codes[i] can't
// be higher than 288,
// and 288 << 15 will not be anywhere close to overflowing 32 bits
total += (u32::from(num_codes[i])) << (max_len - i);
}
// miniz uses unsigned long here. 32-bits should be sufficient though,
// as max_len won't be longer than 15 anyhow.
while total != 1u32 << max_len {
num_codes[max_len] -= 1;
for i in (1..max_len).rev() {
if num_codes[i] != 0 {
num_codes[i] -= 1;
num_codes[i + 1] += 2;
break;
}
}
total -= 1;
}
}
}
#[cfg(test)]
/// Convenience wrapper for tests.
pub fn gen_lengths(frequencies: &[u16], max_len: usize) -> Vec<u8> {
let mut lens = vec![0u8; frequencies.len()];
let mut leaves = Vec::new();
in_place_lengths(frequencies, max_len, &mut leaves, lens.as_mut_slice());
lens
}
/// Generate huffman code lengths, using the algorithm described by
/// Moffat and Katajainen in In-Place Calculation of Minimum-Redundancy Codes
/// https://people.eng.unimelb.edu.au/ammoffat/abstracts/mk95wads.html
/// and it's implementation.
///
/// This is significantly faster, and seems to generally create lengths that result in length
/// tables that are better compressible than the algorithm used previously. The downside of this
/// algorithm is that it's not length-limited, so if too long code lengths are generated,
/// it might result in a sub-optimal tables as the length-restricting function isn't optimal.
pub fn in_place_lengths(
frequencies: &[u16],
max_len: usize,
mut leaves: &mut Vec<Node>,
lengths: &mut [u8],
) {
debug_assert!(lengths.len() >= frequencies.len());
for l in lengths.iter_mut() {
*l = 0;
}
// Clear any previous leaves in the leaf buffer.
leaves.clear();
// Discard zero length nodes as they won't be given a code and thus don't need to
// participate in code length generation and create a new vec of the remaining
// symbols and weights.
leaves.extend(frequencies.iter().enumerate().filter_map(|(n, f)| {
if *f > 0 {
Some(Node {
value: u32::from(*f),
symbol: n as u16,
})
} else {
None
}
}));
// Special cases with zero or 1 value having a non-zero frequency
if leaves.len() == 1 {
lengths[leaves[0].symbol as usize] = 1;
return;
} else if leaves.is_empty() {
return;
}
// Sort the leaves by value. As the sort in the standard library is stable, we don't
// have to worry about the symbol code here.
leaves.sort_by(|a, b| a.value.cmp(&b.value));
step_1(&mut leaves);
step_2(&mut leaves);
// Count how many codes of each length used, for usage in the next section.
let mut num_codes = [0u16; NUM_CODES_LENGTH];
for l in leaves.iter() {
num_codes[l.value as usize] += 1;
}
// As the algorithm used here doesn't limit the maximum length that can be generated
// we need to make sure none of the lengths exceed `max_len`
enforce_max_code_lengths(&mut num_codes, leaves.len(), max_len);
// Output the actual lengths
let mut leaf_it = leaves.iter().rev();
// Start at 1 since the length table is already filled with zeroes.
for (&n_codes, i) in num_codes[1..=max_len].iter().zip(1..=(max_len as u8)) {
for _ in 0..n_codes {
lengths[leaf_it.next().unwrap().symbol as usize] = i;
}
}
debug_assert_eq!(leaf_it.next(), None);
debug_assert!(
validate_lengths(lengths),
"The generated length codes were not valid!"
);
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::huffman_table::NUM_LITERALS_AND_LENGTHS;
use std::u16;
fn lit(value: u8) -> EncodedLength {
EncodedLength::Length(value)
}
fn zero(repeats: u8) -> EncodedLength {
match repeats {
0..=1 => EncodedLength::Length(0),
2..=10 => EncodedLength::RepeatZero3Bits(repeats),
_ => EncodedLength::RepeatZero7Bits(repeats),
}
}
fn copy(copies: u8) -> EncodedLength {
EncodedLength::CopyPrevious(copies)
}
#[test]
fn test_encode_lengths() {
use crate::huffman_table::FIXED_CODE_LENGTHS;
let enc = encode_lengths(FIXED_CODE_LENGTHS.iter());
// There are no lengths lower than 6 in the fixed table
assert_eq!(enc.1[0..7], [0, 0, 0, 0, 0, 0, 0]);
// Neither are there any lengths above 9
assert_eq!(enc.1[10..16], [0, 0, 0, 0, 0, 0]);
// Also there are no zero-length codes so there shouldn't be any repetitions of zero
assert_eq!(enc.1[17..19], [0, 0]);
let test_lengths = [0, 0, 5, 0, 15, 1, 0, 0, 0, 2, 4, 4, 4, 4, 3, 5, 5, 5, 5];
let enc = encode_lengths(test_lengths.iter()).0;
assert_eq!(
enc,
vec![
lit(0),
lit(0),
lit(5),
lit(0),
lit(15),
lit(1),
zero(3),
lit(2),
lit(4),
copy(3),
lit(3),
lit(5),
copy(3),
]
);
let test_lengths = [0, 0, 0, 5, 2, 3, 0, 0, 0];
let enc = encode_lengths(test_lengths.iter()).0;
assert_eq!(enc, vec![zero(3), lit(5), lit(2), lit(3), zero(3)]);
let test_lengths = [0, 0, 0, 3, 3, 3, 5, 4, 4, 4, 4, 0, 0];
let enc = encode_lengths(test_lengths.iter()).0;
assert_eq!(
enc,
vec![
zero(3),
lit(3),
lit(3),
lit(3),
lit(5),
lit(4),
copy(3),
lit(0),
lit(0),
]
);
let lens = [
0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
];
let _ = encode_lengths(lens.iter()).0;
let lens = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 6, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 7, 8, 7, 8, 6, 6, 8, 0, 7, 6, 7, 8, 7, 7,
8, 0, 0, 0, 0, 0, 8, 8, 0, 8, 7, 0, 10, 8, 0, 8, 0, 10, 10, 8, 8, 10, 8, 0, 8, 7, 0,
10, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 7, 7, 6, 7, 8, 8, 6, 0, 0, 8, 8, 7, 8, 8, 0,
7, 6, 6, 8, 8, 8, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 4,
3, 3, 4, 4, 5, 5, 5, 5, 5, 8, 8, 6, 7, 8, 10, 10, 0, 9, /* litlen */
0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 6, 6, 5, 5, 5, 5, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3,
4,
];
let enc = encode_lengths(lens.iter()).0;
assert_eq!(
&enc[..10],
&[
zero(10),
lit(9),
lit(0),
lit(0),
lit(9),
zero(18),
lit(6),
zero(3),
lit(8),
zero(4)
]
);
assert_eq!(
&enc[10..20],
&[
lit(8),
lit(0),
lit(0),
lit(7),
lit(8),
lit(7),
lit(8),
lit(6),
lit(6),
lit(8)
]
);
let enc = encode_lengths([1, 1, 1, 2].iter()).0;
assert_eq!(enc, vec![lit(1), lit(1), lit(1), lit(2)]);
let enc = encode_lengths([0, 0, 3].iter()).0;
assert_eq!(enc, vec![lit(0), lit(0), lit(3)]);
let enc = encode_lengths([0, 0, 0, 5, 2].iter()).0;
assert_eq!(enc, vec![zero(3), lit(5), lit(2)]);
let enc = encode_lengths([0, 0, 0, 5, 0].iter()).0;
assert!(*enc.last().unwrap() != lit(5));
let enc = encode_lengths([0, 4, 4, 4, 4, 0].iter()).0;
assert_eq!(*enc.last().unwrap(), zero(0));
}
#[test]
fn test_lengths_from_frequencies() {
let frequencies = [1, 1, 5, 7, 10, 14];
let expected = [4, 4, 3, 2, 2, 2];
let res = huffman_lengths_from_frequency(&frequencies, 4);
assert_eq!(expected, res.as_slice());
let frequencies = [1, 5, 1, 7, 10, 14];
let expected = [4, 3, 4, 2, 2, 2];
let res = huffman_lengths_from_frequency(&frequencies, 4);
assert_eq!(expected, res.as_slice());
let frequencies = [0, 25, 0, 10, 2, 4];
let res = huffman_lengths_from_frequency(&frequencies, 4);
assert_eq!(res[0], 0);
assert_eq!(res[2], 0);
assert!(res[1] < 4);
// Only one value
let frequencies = [0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0];
let res = huffman_lengths_from_frequency(&frequencies, 5);
let expected = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0];
assert_eq!(expected, res.as_slice());
// No values
let frequencies = [0; 30];
let res = huffman_lengths_from_frequency(&frequencies, 5);
for (a, b) in frequencies.iter().zip(res.iter()) {
assert_eq!(*a, (*b).into());
}
// assert_eq!(frequencies, res.as_slice());
let mut frequencies = vec![3; NUM_LITERALS_AND_LENGTHS];
frequencies[55] = u16::MAX / 3;
frequencies[125] = u16::MAX / 3;
let res = huffman_lengths_from_frequency(&frequencies, 15);
assert_eq!(res.len(), NUM_LITERALS_AND_LENGTHS);
assert!(res[55] < 3);
assert!(res[125] < 3);
}
#[test]
/// Test if the bit lengths for a set of frequencies are optimal (give the best compression
/// give the provided frequencies).
fn optimal_lengths() {
let freqs = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 68, 0, 14, 0, 0, 0, 0, 3, 7, 6, 1, 0, 12, 14, 9, 2, 6, 9, 4, 1, 1, 4, 1, 1, 0,
0, 1, 3, 0, 6, 0, 0, 0, 4, 4, 1, 2, 5, 3, 2, 2, 9, 0, 0, 3, 1, 5, 5, 8, 0, 6, 10, 5, 2,
0, 0, 1, 2, 0, 8, 11, 4, 0, 1, 3, 31, 13, 23, 22, 56, 22, 8, 11, 43, 0, 7, 33, 15, 45,
40, 16, 1, 28, 37, 35, 26, 3, 7, 11, 9, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 126, 114, 66, 31, 41, 25, 15, 21, 20, 16, 15, 10, 7, 5, 1, 1,
];
let lens = huffman_lengths_from_frequency(&freqs, 15);
// Lengths produced by miniz for this frequency table for comparison
// the number of total bits encoded with these huffman codes is 7701
// NOTE: There can be more than one set of optimal lengths for a set of frequencies,
// (though there may be a difference in how well the table itself can be represented)
// so testing for a specific length table is not ideal since different algorithms
// may produce different length tables.
// let lens3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 4, 0, 7, 0, 0, 0, 0, 9, 8, 8, 10, 0, 7, 7, 7, 10, 8, 7, 8,
// 10, 10, 8, 10, 10, 0, 0, 10, 9, 0, 8, 0, 0, 0, 8, 8, 10, 9, 8, 9, 9, 9, 7, 0,
// 0, 9, 10, 8, 8, 7, 0, 8, 7, 8, 9, 0, 0, 10, 9, 0, 7, 7, 8, 0, 10, 9, 6, 7, 6,
// 6, 5, 6, 7, 7, 5, 0, 8, 5, 7, 5, 5, 6, 10, 6, 5, 5, 6, 9, 8, 7, 7, 10, 10, 0,
// 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 10, 4, 4, 4, 5, 5, 6, 7, 6, 6, 6, 6, 7, 8, 8, 10, 10];
//
let num_bits = lens
.iter()
.zip(freqs.iter())
.fold(0, |a, (&f, &l)| a + (f as u16 * l));
assert_eq!(num_bits, 7701);
}
}