lewton/
huffman_tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// Vorbis decoder written in Rust
//
// Copyright (c) 2016 est31 <MTest31@outlook.com>
// and contributors. All rights reserved.
// Licensed under MIT license, or Apache 2 license,
// at your option. Please see the LICENSE file
// attached to this source distribution for details.

/*!
Huffman tree unpacking and traversal

This mod contains the `VorbisHuffmanTree` struct which
can be loaded from the `codebook_codeword_lengths` array
specified for each codebook in the vorbis setup header.

Once decoding is happening, you are more interested in
the `VorbisHuffmanIter` struct which provides you with
facilities to load a value bit by bit.
*/

struct HuffTree {
	// True iff every sub-tree in this tree
	// either has two direct children or none
	even_childs :bool,
	payload :Option<u32>,
	l :Option<Box<HuffTree>>,
	r :Option<Box<HuffTree>>,
}

/*
use std::fmt;
impl fmt::Debug for HuffTree {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		fn fmt_rec(s :&HuffTree, f: &mut fmt::Formatter, depth :u32) -> fmt::Result {
			macro_rules! depth_print {
			($f:ident, $depth:ident) => {
				for _ in 0..$depth {
					try!(write!($f, "| "));
				}
			}}
			if s.l.is_some() || s.r.is_some() {
				try!(writeln!(f, "ec: {:?}, pl: {:?}, LIS {:?} RIS {:?}",
					s.even_childs, s.payload, s.l.is_some(), s.r.is_some()));
			} else {
				try!(writeln!(f, "ec: {:?}, pl: {:?}", s.even_childs, s.payload));
			}
			if let Some(ref v) = s.l {
				depth_print!(f, depth);
				try!(write!(f, "LEFT "));
				try!(fmt_rec(&*v, f, depth + 1));
			}
			if let Some(ref v) = s.r {
				depth_print!(f, depth);
				try!(write!(f, "RIGT "));
				try!(fmt_rec(&*v, f, depth + 1));
			}
			return Ok(());
		}
		try!(fmt_rec(self, f, 1));
		return Ok(());
	}
} // */

impl HuffTree {
	/// Returns whether the addition was successful
	pub fn insert_rec(&mut self, payload :u32, depth :u8) -> bool {
		//print!("INSERT payload {:?} depth {:?} ", payload, depth);
		if self.payload.is_some() {
			//println!(" => OCCUPIED AS LEAF");
			return false;
		}
		if depth == 0 {
			if !(self.l.is_none() && self.r.is_none()) {
				//println!(" => INNER NODE");
				return false;
			}
			self.payload = Some(payload);
			//println!(" => ADDED");
			return true;
		}
		if self.even_childs {
			//println!(" => HAS EVEN CHILDS");
			match &mut self.l {
				&mut Some(_) => return false,
				&mut None => {
					let mut new_node = HuffTree { even_childs :true, payload :None, l :None, r :None };
					new_node.insert_rec(payload, depth - 1);
					self.l = Some(Box::new(new_node));
					self.even_childs = false;
					return true;
				}
			}
		} else {
			//println!(" => HAS NOT EVEN CHILDS");
			// First try left branch
			let left = self.l.as_mut().unwrap();
			if !left.even_childs {
				if left.insert_rec(payload, depth - 1) {
					self.even_childs = left.even_childs &&
						if let &mut Some(ref mut right) = &mut self.r.as_mut() { right.even_childs } else { false };
					return true;
				}
			}
			// Left sub tree was either full or leaf
			// Therefore, put it in the right branch now
			// As left has even_childs == true, right causes
			// us to have even_childs == false.
			return match self.r {
				Some(ref mut right) => {
					let success = right.insert_rec(payload, depth - 1);
					self.even_childs = left.even_childs && right.even_childs;
					success
				},
				None => {
					let mut new_node = HuffTree { even_childs :true, payload :None, l :None, r :None };
					let success = new_node.insert_rec(payload, depth - 1);
					self.even_childs = left.even_childs && new_node.even_childs;
					self.r = Some(Box::new(new_node));
					success
				}
			};
		}
	}
}

#[derive(Debug)]
pub enum HuffmanError {
	Overspecified,
	Underpopulated,
	InvalidSingleEntry,
}

#[derive(Clone, Copy)]
enum UnrolledLookupEntry {
	/// The specified entry was found in the lookup array
	///
	/// First param: offset by which to advance the reader
	/// Second param: the payload
	HasEntry(u8, u32),
	/// Seems the given input is inconclusive and not complete yet.
	///
	/// The argument contains a hint that is an offset inside desc_prog
	/// to help to advance the reader.
	InconclusiveWithHint(u32),
	/// Seems the given input is inconclusive and not complete yet.
	Inconclusive,
}

pub enum PeekedDataLookupResult<'l> {
	/// The supplied info is not enough to result in a payload directly.
	///
	/// First param is the number of bits to advance.
	///
	/// The returned iterator has state up to the count of bits that could be used.
	Iter(u8, VorbisHuffmanIter<'l>),
	/// The supplied info is enough to map to a payload
	///
	/// First param is the number of bits to advance. Second is payload.
	PayloadFound(u8, u32),
}

/// Huffman tree representation
pub struct VorbisHuffmanTree {
	// Format: three bytes per non leaf node, one byte per leaf node.
	// First byte is the payload container,
	// second and third point to the indices inside the vector that
	// have left and right children.
	// If the node is a leaf the highest bit of the payload container 0,
	// if it has children the bit is 1. If its a leaf the lower 31 bits of the
	// payload container form the actual payload.
	desc_prog :Vec<u32>,

	unrolled_entries :[UnrolledLookupEntry; 256],
}

impl VorbisHuffmanTree {
	/// Constructs a new `VorbisHuffmanTree` instance from the passed array,
	/// like the vorbis spec demands.
	///
	/// Returns the resulting tree if the array results in a valid (neither
	/// underspecified nor overspecified) tree.
	pub fn load_from_array(codebook_codeword_lengths :&[u8]) -> Result<VorbisHuffmanTree, HuffmanError> {
		// First step: generate a simple tree representing the
		// Huffman tree
		let mut simple_tree = HuffTree { even_childs :true, payload :None, l :None, r :None };
		let mut cnt :usize = 0;
		let mut last_valid_idx = None;
		for (i, &codeword_length) in codebook_codeword_lengths.iter().enumerate() {
			if codeword_length == 0 {
				continue;
			}
			cnt += 1;
			last_valid_idx = Some(i);
			if !simple_tree.insert_rec(i as u32, codeword_length) {
				try!(Err(HuffmanError::Overspecified)) /* Overspecified, can't be put into tree */
			}
		}
		//println!("The tree:\n{:?}", simple_tree);

		// Single entry codebook special handling
		if cnt == 1 {
			let decoded = last_valid_idx.unwrap();
			let encoded_len = codebook_codeword_lengths[decoded];
			if encoded_len == 1 {
				// Return a vorbis tree that returns decoded for any single bit input
				return Ok(VorbisHuffmanTree {
					desc_prog :vec![1u32 << 31, 3, 3, decoded as u32],
					unrolled_entries :[
						UnrolledLookupEntry::HasEntry(1, decoded as u32); 256
					],
				});
			} else {
				// Single entry codebooks must have 1 as their only length entry
				try!(Err(HuffmanError::InvalidSingleEntry))
			}
		}

		if !simple_tree.even_childs {
			try!(Err(HuffmanError::Underpopulated)); /* Underpopulated */
		}

		// Second step: generate the actual desc_prog
		// by pre_order traversal of the tree.
		//
		// The general advantage of this approach over one with only the simple tree
		// is better cache locality and less memory requirements (at least after the
		// setup with the simple tree).
		let mut desc_prog = Vec::with_capacity(cnt);
		fn traverse(tree :& HuffTree, desc_prog :&mut Vec<u32>) -> u32 {
			let cur_pos = desc_prog.len() as u32;
			let has_children = tree.l.is_some() || tree.r.is_some();

			let entry = ((has_children as u32) << 31) | tree.payload.unwrap_or(0);
			//println!("push node (w_children : {:?}) at {:?} : {:?}", has_children, cur_pos, entry);
			desc_prog.push(entry);

			if has_children {
				desc_prog.push(0);
				desc_prog.push(0);
				desc_prog[cur_pos as usize + 1] =
					traverse(tree.l.as_ref().unwrap(), desc_prog);
				/*println!("left child of node {:?}: at {:?}", cur_pos,
					desc_prog[cur_pos as usize + 1]);// */
				desc_prog[cur_pos as usize + 2] =
					traverse(tree.r.as_ref().unwrap(), desc_prog);
				/*println!("right child of node {:?}: at {:?}", cur_pos,
					desc_prog[cur_pos as usize + 2]);// */
			}
			return cur_pos;
		}
		assert_eq!(traverse(&simple_tree, &mut desc_prog), 0);

		// Third step: generate unrolled entries array
		// Also by pre_order traversal.
		//
		// This gives us a speedup over desc_prog as reading the unrolled
		// entries should involve less branching and less lookups overall.
		let mut unrolled_entries = [UnrolledLookupEntry::Inconclusive; 256];
		fn uroll_traverse(tree :& HuffTree,
				unrolled_entries :&mut [UnrolledLookupEntry; 256],
				prefix :u32, prefix_idx :u8,
				desc_prog :&[u32], desc_prog_idx :u32) {
			let has_children = tree.l.is_some() || tree.r.is_some();

			if has_children {
				// There are children.
				// We'd like to recurse deeper. Can we?
				if prefix_idx == 8 {
					// No we can't.
					// The tree is too deep.
					unrolled_entries[prefix as usize] =
						UnrolledLookupEntry::InconclusiveWithHint(desc_prog_idx);
				} else {
					// Recurse deeper.
					uroll_traverse(tree.l.as_ref().unwrap(),
						unrolled_entries,
						prefix + (0 << prefix_idx), prefix_idx + 1,
						desc_prog, desc_prog[desc_prog_idx as usize + 1]);
					uroll_traverse(tree.r.as_ref().unwrap(),
						unrolled_entries,
						prefix + (1 << prefix_idx), prefix_idx + 1,
						desc_prog, desc_prog[desc_prog_idx as usize + 2]);
				}
			} else {
				// No children, fill the entries in the range according to
				// the prefix we have.
				let payload = tree.payload.unwrap();
				let it = 1 << prefix_idx;
				let mut i = prefix as usize;
				for _ in 1 .. (1u16 << (8 - prefix_idx)) {
					unrolled_entries[i] =
						UnrolledLookupEntry::HasEntry(prefix_idx, payload);
					i += it;
				}
			}
		}
		if cnt > 0 {
			uroll_traverse(&simple_tree,
				&mut unrolled_entries, 0, 0, &desc_prog, 0);
		}

		// Now we are done, return the result
		return Ok(VorbisHuffmanTree {
			desc_prog,
			unrolled_entries,
		});
	}

	/// Returns an iterator over this tree.
	pub fn iter<'l>(&'l self) -> VorbisHuffmanIter<'l> {
		return VorbisHuffmanIter { desc_prog :&self.desc_prog, pos :0 };
	}

	/// Resolves a given number of peeked bits.
	///
	/// Returns whether the data given is enough to uniquely identify a
	/// tree element, or whether only an iterator that's progressed by
	/// a given amount can be returned. Also, info is returned about how
	/// far the reader can be advanced.
	pub fn lookup_peeked_data<'l>(&'l self, bit_count :u8, peeked_data :u32)
			-> PeekedDataLookupResult<'l> {
		if bit_count > 8 {
			panic!("Bit count {} larger than allowed 8", bit_count);
		}
		use self::UnrolledLookupEntry::*;
		use self::PeekedDataLookupResult::*;
		return match self.unrolled_entries[peeked_data as usize] {
			// If cnt_to_remove is bigger than bit_count the result is inconclusive.
			// Return in this case.
			HasEntry(cnt_to_remove, payload) if cnt_to_remove <= bit_count
				=> PayloadFound(cnt_to_remove, payload),
			InconclusiveWithHint(hint)
				=> Iter(8, VorbisHuffmanIter { desc_prog : &self.desc_prog, pos : hint }),
			_
				=> Iter(0, VorbisHuffmanIter { desc_prog : &self.desc_prog, pos : 0 }),
		};
	}
}

/// Iterator on the Huffman tree
pub struct VorbisHuffmanIter<'a> {
	desc_prog :&'a Vec<u32>,
	pos :u32,
}

impl<'a> VorbisHuffmanIter<'a> {
	/// Iterate one level deeper inside the tree.
	/// Returns `Some(p)` if it encounters a leaf with a payload p,
	/// None if it only processed an inner node.
	///
	/// Inner nodes don't carry payloads in huffman trees.
	///
	/// If this function encounters a leaf, it automatically resets
	/// the iterator to its starting state.
	///
	/// # Panics
	///
	/// Panics if the vorbis huffman treee is empty. It has to be found out
	/// what to do if the huffman tree is empty, whether to reject the stream,
	/// or whether to do sth else. Finding this out is a TODO.
	pub fn next(&mut self, bit :bool) -> Option<u32> {
		// Assertion test for the paranoid and testing, comment out if you are:
		/*let cur_entry = self.desc_prog[self.pos as usize];
		assert!((cur_entry & (1u32 << 31)) != 0);*/

		//print!("With bit {:?}, pos {:?} becomes pos ", bit, self.pos);
		self.pos = self.desc_prog[self.pos as usize + 1 + bit as usize];
		//print!("{:?}", self.pos);
		let child = self.desc_prog[self.pos as usize];
		if (child & (1u32 << 31)) != 0 {
			//println!(" => None");
			// child has children
			return None;
		} else {
			//println!(" => Some({:?})", child);
			// child has no children, it's a leaf
			self.pos = 0;
			return Some(child);
		}
	}
}

#[cfg(test)]
impl VorbisHuffmanTree {
	fn iter_test(&self, path :u32, path_len :u8, expected_val :u32) {
		let mut itr = self.iter();
		for i in 1 .. path_len {
			assert_eq!(itr.next((path & (1 << (path_len - i))) != 0), None);
		}
		assert_eq!(itr.next((path & 1) != 0), Some(expected_val));
	}
}

#[test]
fn test_huffman_tree() {
	// Official example from the vorbis spec section 3.2.1
	let tree = VorbisHuffmanTree::load_from_array(&[2, 4, 4, 4, 4, 2, 3, 3]).unwrap();

	tree.iter_test(0b00, 2, 0);
	tree.iter_test(0b0100, 4, 1);
	tree.iter_test(0b0101, 4, 2);
	tree.iter_test(0b0110, 4, 3);
	tree.iter_test(0b0111, 4, 4);
	tree.iter_test(0b10, 2, 5);
	tree.iter_test(0b110, 3, 6);
	tree.iter_test(0b111, 3, 7);

	// Some other example
	// we mostly test the length (max 32) here
	VorbisHuffmanTree::load_from_array(&[
		1,   2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
		17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32]).unwrap();
}

#[test]
fn test_issue_8() {
	// regression test for issue 8
	// make sure that it doesn't panic.
	let _ = VorbisHuffmanTree::load_from_array(&[0; 625]);
}

#[test]
fn test_under_over_spec() {
	// All trees base on the official example from the vorbis spec section 3.2.1
	// but with modifications to under- or overspecify them

	// underspecified
	let tree = VorbisHuffmanTree::load_from_array(&[2, 4, 4, 4, 4, 2, 3/*, 3*/]);
	assert!(tree.is_err());

	// underspecified
	let tree = VorbisHuffmanTree::load_from_array(&[2, 4, 4, 4, /*4,*/ 2, 3, 3]);
	assert!(tree.is_err());

	// overspecified
	let tree = VorbisHuffmanTree::load_from_array(&[2, 4, 4, 4, 4, 2, 3, 3/*]*/,3]);
	assert!(tree.is_err());
}

#[test]
fn test_single_entry_huffman_tree() {
	// Special testing for single entry codebooks, as required by the vorbis spec
	let tree = VorbisHuffmanTree::load_from_array(&[1]).unwrap();
	tree.iter_test(0b0, 1, 0);
	tree.iter_test(0b1, 1, 0);

	let tree = VorbisHuffmanTree::load_from_array(&[0, 0, 1, 0]).unwrap();
	tree.iter_test(0b0, 1, 2);
	tree.iter_test(0b1, 1, 2);

	let tree = VorbisHuffmanTree::load_from_array(&[2]);
	assert!(tree.is_err());
}

#[test]
fn test_unordered_huffman_tree() {
	// Reordered the official example from the vorbis spec section 3.2.1
	//
	// Ensuring that unordered huffman trees work as well is important
	// because the spec does not disallow them, and unordered
	// huffman trees appear in "the wild".
	let tree = VorbisHuffmanTree::load_from_array(&[2, 4, 4, 2, 4, 4, 3, 3]).unwrap();

	tree.iter_test(0b00, 2, 0);
	tree.iter_test(0b0100, 4, 1);
	tree.iter_test(0b0101, 4, 2);
	tree.iter_test(0b10, 2, 3);
	tree.iter_test(0b0110, 4, 4);
	tree.iter_test(0b0111, 4, 5);
	tree.iter_test(0b110, 3, 6);
	tree.iter_test(0b111, 3, 7);
}

#[test]
fn test_extracted_huffman_tree() {
	// Extracted from a real-life vorbis file.
	VorbisHuffmanTree::load_from_array(&[
	5,  6, 11, 11, 11, 11, 10, 10, 12, 11,  5,  2, 11,  5,  6,  6,
	7,  9, 11, 13, 13, 10,  7, 11,  6,  7,  8,  9, 10, 12, 11,  5,
	11, 6,  8,  7,  9, 11, 14, 15, 11,  6,  6,  8,  4,  5,  7,  8,
	10,13, 10,  5,  7,  7,  5,  5,  6,  8, 10, 11, 10,  7,  7,  8,
	6,  5,  5,  7,  9,  9, 11,  8,  8, 11,  8,  7,  6,  6,  7,  9,
	12,11, 10, 13,  9,  9,  7,  7,  7,  9, 11, 13, 12, 15, 12, 11,
	9,  8,  8,  8]).unwrap();
}