ncollide3d/query/point/point_tetrahedron.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
use crate::math::{Isometry, Point, Vector};
use crate::query::{PointProjection, PointQuery, PointQueryWithLocation};
use crate::shape::{FeatureId, Tetrahedron, TetrahedronPointLocation};
use na::{self, RealField};
impl<N: RealField + Copy> PointQuery<N> for Tetrahedron<N> {
#[inline]
fn project_point(&self, m: &Isometry<N>, pt: &Point<N>, solid: bool) -> PointProjection<N> {
let (projection, _) = self.project_point_with_location(m, pt, solid);
projection
}
#[inline]
fn project_point_with_feature(
&self,
m: &Isometry<N>,
pt: &Point<N>,
) -> (PointProjection<N>, FeatureId) {
let (proj, loc) = self.project_point_with_location(m, pt, false);
let feature = match loc {
TetrahedronPointLocation::OnVertex(i) => FeatureId::Vertex(i),
TetrahedronPointLocation::OnEdge(i, _) => FeatureId::Edge(i),
TetrahedronPointLocation::OnFace(i, _) => FeatureId::Face(i),
TetrahedronPointLocation::OnSolid => unreachable!(),
};
(proj, feature)
}
}
impl<N: RealField + Copy> PointQueryWithLocation<N> for Tetrahedron<N> {
type Location = TetrahedronPointLocation<N>;
#[inline]
fn project_point_with_location(
&self,
m: &Isometry<N>,
pt: &Point<N>,
solid: bool,
) -> (PointProjection<N>, Self::Location) {
let p = m.inverse_transform_point(pt);
let ab = self.b - self.a;
let ac = self.c - self.a;
let ad = self.d - self.a;
let ap = p - self.a;
/*
* Voronoï regions of vertices.
*/
let ap_ab = ap.dot(&ab);
let ap_ac = ap.dot(&ac);
let ap_ad = ap.dot(&ad);
let _0: N = na::zero();
if ap_ab <= _0 && ap_ac <= _0 && ap_ad <= _0 {
// Voronoï region of `a`.
let proj = PointProjection::new(false, m * self.a);
return (proj, TetrahedronPointLocation::OnVertex(0));
}
let bc = self.c - self.b;
let bd = self.d - self.b;
let bp = p - self.b;
let bp_bc = bp.dot(&bc);
let bp_bd = bp.dot(&bd);
let bp_ab = bp.dot(&ab);
if bp_bc <= _0 && bp_bd <= _0 && bp_ab >= _0 {
// Voronoï region of `b`.
let proj = PointProjection::new(false, m * self.b);
return (proj, TetrahedronPointLocation::OnVertex(1));
}
let cd = self.d - self.c;
let cp = p - self.c;
let cp_ac = cp.dot(&ac);
let cp_bc = cp.dot(&bc);
let cp_cd = cp.dot(&cd);
if cp_cd <= _0 && cp_bc >= _0 && cp_ac >= _0 {
// Voronoï region of `c`.
let proj = PointProjection::new(false, m * self.c);
return (proj, TetrahedronPointLocation::OnVertex(2));
}
let dp = p - self.d;
let dp_cd = dp.dot(&cd);
let dp_bd = dp.dot(&bd);
let dp_ad = dp.dot(&ad);
if dp_ad >= _0 && dp_bd >= _0 && dp_cd >= _0 {
// Voronoï region of `d`.
let proj = PointProjection::new(false, m * self.d);
return (proj, TetrahedronPointLocation::OnVertex(3));
}
/*
* Voronoï regions of edges.
*/
#[inline(always)]
fn check_edge<N: RealField + Copy>(
i: usize,
m: &Isometry<N>,
a: &Point<N>,
_: &Point<N>,
nabc: &Vector<N>,
nabd: &Vector<N>,
ap: &Vector<N>,
ab: &Vector<N>,
ap_ab: N, /*ap_ac: N, ap_ad: N,*/
bp_ab: N, /*bp_ac: N, bp_ad: N*/
) -> (
N,
N,
Option<(PointProjection<N>, TetrahedronPointLocation<N>)>,
) {
let _0: N = na::zero();
let _1: N = na::one();
let ab_ab = ap_ab - bp_ab;
// NOTE: The following avoids the subsequent cross and dot products but are not
// numerically stable.
//
// let dabc = ap_ab * (ap_ac - bp_ac) - ap_ac * ab_ab;
// let dabd = ap_ab * (ap_ad - bp_ad) - ap_ad * ab_ab;
let ap_x_ab = ap.cross(ab);
let dabc = ap_x_ab.dot(nabc);
let dabd = ap_x_ab.dot(nabd);
// FIXME: the case where ab_ab == _0 is not well defined.
if ab_ab != _0 && dabc >= _0 && dabd >= _0 && ap_ab >= _0 && ap_ab <= ab_ab {
// Voronoi region of `ab`.
let u = ap_ab / ab_ab;
let bcoords = [_1 - u, u];
let res = a + ab * u;
let proj = PointProjection::new(false, m * res);
(
dabc,
dabd,
Some((proj, TetrahedronPointLocation::OnEdge(i, bcoords))),
)
} else {
(dabc, dabd, None)
}
}
// Voronoï region of ab.
// let bp_ad = bp_bd + bp_ab;
// let bp_ac = bp_bc + bp_ab;
let nabc = ab.cross(&ac);
let nabd = ab.cross(&ad);
let (dabc, dabd, res) = check_edge(
0, m, &self.a, &self.b, &nabc, &nabd, &ap, &ab, ap_ab,
/*ap_ac, ap_ad,*/ bp_ab, /*, bp_ac, bp_ad*/
);
if let Some(res) = res {
return res;
}
// Voronoï region of ac.
// Substitutions (wrt. ab):
// b -> c
// c -> d
// d -> b
// let cp_ab = cp_ac - cp_bc;
// let cp_ad = cp_cd + cp_ac;
let nacd = ac.cross(&ad);
let (dacd, dacb, res) = check_edge(
1, m, &self.a, &self.c, &nacd, &-nabc, &ap, &ac, ap_ac,
/*ap_ad, ap_ab,*/ cp_ac, /*, cp_ad, cp_ab*/
);
if let Some(res) = res {
return res;
}
// Voronoï region of ad.
// Substitutions (wrt. ab):
// b -> d
// c -> b
// d -> c
// let dp_ac = dp_ad - dp_cd;
// let dp_ab = dp_ad - dp_bd;
let (dadb, dadc, res) = check_edge(
2, m, &self.a, &self.d, &-nabd, &-nacd, &ap, &ad, ap_ad,
/*ap_ab, ap_ac,*/ dp_ad, /*, dp_ab, dp_ac*/
);
if let Some(res) = res {
return res;
}
// Voronoï region of bc.
// Substitutions (wrt. ab):
// a -> b
// b -> c
// c -> a
// let cp_bd = cp_cd + cp_bc;
let nbcd = bc.cross(&bd);
// NOTE: nabc = nbcd
let (dbca, dbcd, res) = check_edge(
3, m, &self.b, &self.c, &nabc, &nbcd, &bp, &bc, bp_bc,
/*-bp_ab, bp_bd,*/ cp_bc, /*, -cp_ab, cp_bd*/
);
if let Some(res) = res {
return res;
}
// Voronoï region of bd.
// Substitutions (wrt. ab):
// a -> b
// b -> d
// d -> a
// let dp_bc = dp_bd - dp_cd;
// NOTE: nbdc = -nbcd
// NOTE: nbda = nabd
let (dbdc, dbda, res) = check_edge(
4, m, &self.b, &self.d, &-nbcd, &nabd, &bp, &bd, bp_bd,
/*bp_bc, -bp_ab,*/ dp_bd, /*, dp_bc, -dp_ab*/
);
if let Some(res) = res {
return res;
}
// Voronoï region of cd.
// Substitutions (wrt. ab):
// a -> c
// b -> d
// c -> a
// d -> b
// NOTE: ncda = nacd
// NOTE: ncdb = nbcd
let (dcda, dcdb, res) = check_edge(
5, m, &self.c, &self.d, &nacd, &nbcd, &cp, &cd, cp_cd,
/*-cp_ac, -cp_bc,*/ dp_cd, /*, -dp_ac, -dp_bc*/
);
if let Some(res) = res {
return res;
}
/*
* Voronoï regions of faces.
*/
#[inline(always)]
fn check_face<N: RealField + Copy>(
i: usize,
a: &Point<N>,
b: &Point<N>,
c: &Point<N>,
m: &Isometry<N>,
ap: &Vector<N>,
bp: &Vector<N>,
cp: &Vector<N>,
ab: &Vector<N>,
ac: &Vector<N>,
ad: &Vector<N>,
dabc: N,
dbca: N,
dacb: N,
/* ap_ab: N, bp_ab: N, cp_ab: N,
ap_ac: N, bp_ac: N, cp_ac: N, */
) -> Option<(PointProjection<N>, TetrahedronPointLocation<N>)> {
let _0: N = na::zero();
let _1: N = na::one();
if dabc < _0 && dbca < _0 && dacb < _0 {
let n = ab.cross(ac); // FIXME: is is possible to avoid this cross product?
if n.dot(ad) * n.dot(ap) < _0 {
// Voronoï region of the face.
// NOTE:
// The following avoids expansive computations but are not very
// numerically stable.
//
// let va = bp_ab * cp_ac - cp_ab * bp_ac;
// let vb = cp_ab * ap_ac - ap_ab * cp_ac;
// let vc = ap_ab * bp_ac - bp_ab * ap_ac;
// NOTE: the normalization may fail even if the dot products
// above were < 0. This happens, e.g., when we use fixed-point
// numbers and there are not enough decimal bits to perform
// the normalization.
let normal = n.try_normalize(N::default_epsilon())?;
let vc = normal.dot(&ap.cross(bp));
let va = normal.dot(&bp.cross(cp));
let vb = normal.dot(&cp.cross(ap));
let denom = va + vb + vc;
assert!(denom != _0);
let inv_denom = _1 / denom;
let bcoords = [va * inv_denom, vb * inv_denom, vc * inv_denom];
let res = a * bcoords[0] + b.coords * bcoords[1] + c.coords * bcoords[2];
let proj = PointProjection::new(false, m * res);
return Some((proj, TetrahedronPointLocation::OnFace(i, bcoords)));
}
}
return None;
}
// Face abc.
if let Some(res) = check_face(
0, &self.a, &self.b, &self.c, m, &ap, &bp, &cp, &ab, &ac, &ad, dabc, dbca,
dacb,
/*ap_ab, bp_ab, cp_ab,
ap_ac, bp_ac, cp_ac*/
) {
return res;
}
// Face abd.
if let Some(res) = check_face(
1, &self.a, &self.b, &self.d, m, &ap, &bp, &dp, &ab, &ad, &ac, dadb, dabd,
dbda,
/*ap_ab, bp_ab, dp_ab,
ap_ad, bp_ad, dp_ad*/
) {
return res;
}
// Face acd.
if let Some(res) = check_face(
2, &self.a, &self.c, &self.d, m, &ap, &cp, &dp, &ac, &ad, &ab, dacd, dcda,
dadc,
/*ap_ac, cp_ac, dp_ac,
ap_ad, cp_ad, dp_ad*/
) {
return res;
}
// Face bcd.
if let Some(res) = check_face(
3, &self.b, &self.c, &self.d, m, &bp, &cp, &dp, &bc, &bd, &-ab, dbcd, dcdb,
dbdc,
/*bp_bc, cp_bc, dp_bc,
bp_bd, cp_bd, dp_bd*/
) {
return res;
}
if !solid {
// XXX: implement the non-solid projection.
unimplemented!("Non-solid ray-cast on a tetrahedron is not yet implemented.")
}
let proj = PointProjection::new(true, m * p);
return (proj, TetrahedronPointLocation::OnSolid);
}
}