dasp_sample/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
//! Use the [**Sample**](./trait.Sample.html) trait to remain generic over sample types, easily
//! access sample type conversions, apply basic audio operations and more.
//!
//! The **Sample** trait is the core abstraction throughout dasp on which most other abstractions
//! are based.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
#[cfg(not(feature = "std"))]
extern crate alloc;
pub use conv::{Duplex, FromSample, ToSample};
pub use types::{I24, I48, U24, U48};
pub mod conv;
mod ops;
pub mod types;
/// A trait for working generically across different **Sample** format types.
///
/// Provides methods for converting to and from any type that implements the
/// [`FromSample`](./trait.FromSample.html) trait and provides methods for performing signal
/// amplitude addition and multiplication.
///
/// # Example
///
/// ```rust
/// use dasp_sample::{I24, Sample};
///
/// fn main() {
/// assert_eq!((-1.0).to_sample::<u8>(), 0);
/// assert_eq!(0.0.to_sample::<u8>(), 128);
/// assert_eq!(0i32.to_sample::<u32>(), 2_147_483_648);
/// assert_eq!(I24::new(0).unwrap(), Sample::from_sample(0.0));
/// assert_eq!(0.0, Sample::EQUILIBRIUM);
/// }
/// ```
pub trait Sample: Copy + Clone + PartialOrd + PartialEq {
/// When summing two samples of a signal together, it is necessary for both samples to be
/// represented in some signed format. This associated `Addition` type represents the format to
/// which `Self` should be converted for optimal `Addition` performance.
///
/// For example, u32's optimal `Addition` type would be i32, u8's would be i8, f32's would be
/// f32, etc.
///
/// Specifying this as an associated type allows us to automatically determine the optimal,
/// lossless Addition format type for summing any two unique `Sample` types together.
///
/// As a user of the `sample` crate, you will never need to be concerned with this type unless
/// you are defining your own unique `Sample` type(s).
type Signed: SignedSample + Duplex<Self>;
/// When multiplying two samples of a signal together, it is necessary for both samples to be
/// represented in some signed, floating-point format. This associated `Multiplication` type
/// represents the format to which `Self` should be converted for optimal `Multiplication`
/// performance.
///
/// For example, u32's optimal `Multiplication` type would be f32, u64's would be f64, i8's
/// would be f32, etc.
///
/// Specifying this as an associated type allows us to automatically determine the optimal,
/// lossless Multiplication format type for multiplying any two unique `Sample` types together.
///
/// As a user of the `sample` crate, you will never need to be concerned with this type unless
/// you are defining your own unique `Sample` type(s).
type Float: FloatSample + Duplex<Self>;
/// The equilibrium value for the wave that this `Sample` type represents. This is normally the
/// value that is equal distance from both the min and max ranges of the sample.
///
/// # Example
///
/// ```rust
/// use dasp_sample::Sample;
///
/// fn main() {
/// assert_eq!(0.0, f32::EQUILIBRIUM);
/// assert_eq!(0, i32::EQUILIBRIUM);
/// assert_eq!(128, u8::EQUILIBRIUM);
/// assert_eq!(32_768_u16, Sample::EQUILIBRIUM);
/// }
/// ```
///
/// **Note:** This will likely be changed to an "associated const" if the feature lands.
const EQUILIBRIUM: Self;
/// The multiplicative identity of the signal.
///
/// In other words: A value which when used to scale/multiply the amplitude or frequency of a
/// signal, returns the same signal.
///
/// This is useful as a default, non-affecting amplitude or frequency multiplier.
///
/// # Example
///
/// ```rust
/// use dasp_sample::{Sample, U48};
///
/// fn main() {
/// assert_eq!(1.0, f32::IDENTITY);
/// assert_eq!(1.0, i8::IDENTITY);
/// assert_eq!(1.0, u8::IDENTITY);
/// assert_eq!(1.0, U48::IDENTITY);
/// }
/// ```
const IDENTITY: Self::Float = <Self::Float as FloatSample>::IDENTITY;
/// Convert `self` to any type that implements `FromSample<Self>`.
///
/// Find more details on type-specific conversion ranges and caveats in the `conv` module.
///
/// # Example
///
/// ```rust
/// use dasp_sample::Sample;
///
/// fn main() {
/// assert_eq!(0.0.to_sample::<i32>(), 0);
/// assert_eq!(0.0.to_sample::<u8>(), 128);
/// assert_eq!((-1.0).to_sample::<u8>(), 0);
/// }
/// ```
#[inline]
fn to_sample<S>(self) -> S
where
Self: ToSample<S>,
{
self.to_sample_()
}
/// Create a `Self` from any type that implements `ToSample<Self>`.
///
/// Find more details on type-specific conversion ranges and caveats in the `conv` module.
///
/// # Example
///
/// ```rust
/// use dasp_sample::{Sample, I24};
///
/// fn main() {
/// assert_eq!(f32::from_sample(128_u8), 0.0);
/// assert_eq!(i8::from_sample(-1.0), -128);
/// assert_eq!(I24::from_sample(0.0), I24::new(0).unwrap());
/// }
/// ```
#[inline]
fn from_sample<S>(s: S) -> Self
where
Self: FromSample<S>,
{
FromSample::from_sample_(s)
}
/// Converts `self` to the equivalent `Sample` in the associated `Signed` format.
///
/// This is a simple wrapper around `Sample::to_sample` which may provide extra convenience in
/// some cases, particularly for assisting type inference.
///
/// # Example
///
/// ```rust
/// use dasp_sample::Sample;
///
/// fn main() {
/// assert_eq!(128_u8.to_signed_sample(), 0i8);
/// }
/// ```
fn to_signed_sample(self) -> Self::Signed {
self.to_sample()
}
/// Converts `self` to the equivalent `Sample` in the associated `Float` format.
///
/// This is a simple wrapper around `Sample::to_sample` which may provide extra convenience in
/// some cases, particularly for assisting type inference.
///
/// # Example
///
/// ```rust
/// use dasp_sample::Sample;
///
/// fn main() {
/// assert_eq!(128_u8.to_float_sample(), 0.0);
/// }
/// ```
fn to_float_sample(self) -> Self::Float {
self.to_sample()
}
/// Adds (or "offsets") the amplitude of the `Sample` by the given signed amplitude.
///
/// `Self` will be converted to `Self::Signed`, the addition will occur and then the result
/// will be converted back to `Self`. These conversions allow us to correctly handle the
/// addition of unsigned signal formats.
///
/// # Example
///
/// ```rust
/// use dasp_sample::Sample;
///
/// fn main() {
/// assert_eq!(0.25.add_amp(0.5), 0.75);
/// assert_eq!(192u8.add_amp(-128), 64);
/// }
/// ```
#[inline]
fn add_amp(self, amp: Self::Signed) -> Self {
let self_s = self.to_signed_sample();
(self_s + amp).to_sample()
}
/// Multiplies (or "scales") the amplitude of the `Sample` by the given float amplitude.
///
/// - `amp` > 1.0 amplifies the sample.
/// - `amp` < 1.0 attenuates the sample.
/// - `amp` == 1.0 yields the same sample.
/// - `amp` == 0.0 yields the `Sample::EQUILIBRIUM`.
///
/// `Self` will be converted to `Self::Float`, the multiplication will occur and then the
/// result will be converted back to `Self`. These conversions allow us to correctly handle the
/// multiplication of integral signal formats.
///
/// # Example
///
/// ```rust
/// use dasp_sample::Sample;
///
/// fn main() {
/// assert_eq!(64_i8.mul_amp(0.5), 32);
/// assert_eq!(0.5.mul_amp(-2.0), -1.0);
/// assert_eq!(64_u8.mul_amp(0.0), 128);
/// }
/// ```
#[inline]
fn mul_amp(self, amp: Self::Float) -> Self {
let self_f = self.to_float_sample();
(self_f * amp).to_sample()
}
}
/// A macro used to simplify the implementation of `Sample`.
macro_rules! impl_sample {
($($T:ty:
Signed: $Addition:ty,
Float: $Modulation:ty,
EQUILIBRIUM: $EQUILIBRIUM:expr),*) =>
{
$(
impl Sample for $T {
type Signed = $Addition;
type Float = $Modulation;
const EQUILIBRIUM: Self = $EQUILIBRIUM;
}
)*
}
}
// Expands to `Sample` implementations for all of the following types.
impl_sample! {
i8: Signed: i8, Float: f32, EQUILIBRIUM: 0,
i16: Signed: i16, Float: f32, EQUILIBRIUM: 0,
I24: Signed: I24, Float: f32, EQUILIBRIUM: types::i24::EQUILIBRIUM,
i32: Signed: i32, Float: f32, EQUILIBRIUM: 0,
I48: Signed: I48, Float: f64, EQUILIBRIUM: types::i48::EQUILIBRIUM,
i64: Signed: i64, Float: f64, EQUILIBRIUM: 0,
u8: Signed: i8, Float: f32, EQUILIBRIUM: 128,
u16: Signed: i16, Float: f32, EQUILIBRIUM: 32_768,
U24: Signed: i32, Float: f32, EQUILIBRIUM: types::u24::EQUILIBRIUM,
u32: Signed: i32, Float: f32, EQUILIBRIUM: 2_147_483_648,
U48: Signed: i64, Float: f64, EQUILIBRIUM: types::u48::EQUILIBRIUM,
u64: Signed: i64, Float: f64, EQUILIBRIUM: 9_223_372_036_854_775_808,
f32: Signed: f32, Float: f32, EQUILIBRIUM: 0.0,
f64: Signed: f64, Float: f64, EQUILIBRIUM: 0.0
}
/// Integral and floating-point **Sample** format types whose equilibrium is at 0.
///
/// **Sample**s often need to be converted to some mutual **SignedSample** type for signal
/// addition.
pub trait SignedSample:
Sample<Signed = Self>
+ core::ops::Add<Output = Self>
+ core::ops::Sub<Output = Self>
+ core::ops::Neg<Output = Self>
{
}
macro_rules! impl_signed_sample { ($($T:ty)*) => { $( impl SignedSample for $T {} )* } }
impl_signed_sample!(i8 i16 I24 i32 I48 i64 f32 f64);
/// Sample format types represented as floating point numbers.
///
/// **Sample**s often need to be converted to some mutual **FloatSample** type for signal scaling
/// and modulation.
pub trait FloatSample:
Sample<Signed = Self, Float = Self>
+ SignedSample
+ core::ops::Mul<Output = Self>
+ core::ops::Div<Output = Self>
+ Duplex<f32>
+ Duplex<f64>
{
/// Represents the multiplicative identity of the floating point signal.
const IDENTITY: Self;
/// Calculate the square root of `Self`.
fn sample_sqrt(self) -> Self;
}
impl FloatSample for f32 {
const IDENTITY: Self = 1.0;
#[inline]
fn sample_sqrt(self) -> Self {
ops::f32::sqrt(self)
}
}
impl FloatSample for f64 {
const IDENTITY: Self = 1.0;
#[inline]
fn sample_sqrt(self) -> Self {
ops::f64::sqrt(self)
}
}