1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//! Macros for `nalgebra`.
//!
//! This crate is not intended for direct consumption. Instead, the macros are re-exported by
//! `nalgebra` if the `macros` feature is enabled (enabled by default).

extern crate proc_macro;

use proc_macro::TokenStream;
use quote::{quote, ToTokens, TokenStreamExt};
use syn::parse::{Error, Parse, ParseStream, Result};
use syn::punctuated::Punctuated;
use syn::Expr;
use syn::{parse_macro_input, Token};

use proc_macro2::{Delimiter, Spacing, TokenStream as TokenStream2, TokenTree};
use proc_macro2::{Group, Punct};

struct Matrix {
    // Represent the matrix as a row-major vector of vectors of expressions
    rows: Vec<Vec<Expr>>,
    ncols: usize,
}

impl Matrix {
    fn nrows(&self) -> usize {
        self.rows.len()
    }

    fn ncols(&self) -> usize {
        self.ncols
    }

    /// Produces a stream of tokens representing this matrix as a column-major nested array.
    fn to_col_major_nested_array_tokens(&self) -> TokenStream2 {
        let mut result = TokenStream2::new();
        for j in 0..self.ncols() {
            let mut col = TokenStream2::new();
            let col_iter = (0..self.nrows()).map(move |i| &self.rows[i][j]);
            col.append_separated(col_iter, Punct::new(',', Spacing::Alone));
            result.append(Group::new(Delimiter::Bracket, col));
            result.append(Punct::new(',', Spacing::Alone));
        }
        TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, result)))
    }

    /// Produces a stream of tokens representing this matrix as a column-major flat array
    /// (suitable for representing e.g. a `DMatrix`).
    fn to_col_major_flat_array_tokens(&self) -> TokenStream2 {
        let mut data = TokenStream2::new();
        for j in 0..self.ncols() {
            for i in 0..self.nrows() {
                self.rows[i][j].to_tokens(&mut data);
                data.append(Punct::new(',', Spacing::Alone));
            }
        }
        TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, data)))
    }
}

type MatrixRowSyntax = Punctuated<Expr, Token![,]>;

impl Parse for Matrix {
    fn parse(input: ParseStream) -> Result<Self> {
        let mut rows = Vec::new();
        let mut ncols = None;

        while !input.is_empty() {
            let row_span = input.span();
            let row = MatrixRowSyntax::parse_separated_nonempty(input)?;

            if let Some(ncols) = ncols {
                if row.len() != ncols {
                    let row_idx = rows.len();
                    let error_msg = format!(
                        "Unexpected number of entries in row {}. Expected {}, found {} entries.",
                        row_idx,
                        ncols,
                        row.len()
                    );
                    return Err(Error::new(row_span, error_msg));
                }
            } else {
                ncols = Some(row.len());
            }
            rows.push(row.into_iter().collect());

            // We've just read a row, so if there are more tokens, there must be a semi-colon,
            // otherwise the input is malformed
            if !input.is_empty() {
                input.parse::<Token![;]>()?;
            }
        }

        Ok(Self {
            rows,
            ncols: ncols.unwrap_or(0),
        })
    }
}

/// Construct a fixed-size matrix directly from data.
///
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
///
/// This macro facilitates easy construction of matrices when the entries of the matrix are known
/// (either as constants or expressions). This macro produces an instance of `SMatrix`. This means
/// that the data of the matrix is stored on the stack, and its dimensions are fixed at
/// compile-time. If you want to construct a dynamic matrix, use [`dmatrix!`] instead.
///
/// `matrix!` is intended to be both the simplest and most efficient way to construct (small)
/// matrices, and can also be used in *const fn* contexts.
///
/// The syntax is MATLAB-like. Column elements are separated by a comma (`,`), and a semi-colon
/// (`;`) designates that a new row begins.
///
/// # Examples
///
/// ```
/// use nalgebra::matrix;
///
/// // Produces a Matrix3<_> == SMatrix<_, 3, 3>
/// let a = matrix![1, 2, 3;
///                 4, 5, 6;
///                 7, 8, 9];
/// ```
///
/// You can construct matrices with arbitrary expressions for its elements:
///
/// ```
/// use nalgebra::{matrix, Matrix2};
/// let theta = 0.45f64;
///
/// let r = matrix![theta.cos(), - theta.sin();
///                 theta.sin(),   theta.cos()];
/// ```
#[proc_macro]
pub fn matrix(stream: TokenStream) -> TokenStream {
    let matrix = parse_macro_input!(stream as Matrix);

    let row_dim = matrix.nrows();
    let col_dim = matrix.ncols();

    let array_tokens = matrix.to_col_major_nested_array_tokens();

    //  TODO: Use quote_spanned instead??
    let output = quote! {
        nalgebra::SMatrix::<_, #row_dim, #col_dim>
            ::from_array_storage(nalgebra::ArrayStorage(#array_tokens))
    };

    proc_macro::TokenStream::from(output)
}

/// Construct a dynamic matrix directly from data.
///
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
///
/// The syntax is exactly the same as for [`matrix!`], but instead of producing instances of
/// `SMatrix`, it produces instances of `DMatrix`. At the moment it is not usable
/// in `const fn` contexts.
///
/// ```
/// use nalgebra::dmatrix;
///
/// // Produces a DMatrix<_>
/// let a = dmatrix![1, 2, 3;
///                  4, 5, 6;
///                  7, 8, 9];
/// ```
#[proc_macro]
pub fn dmatrix(stream: TokenStream) -> TokenStream {
    let matrix = parse_macro_input!(stream as Matrix);

    let row_dim = matrix.nrows();
    let col_dim = matrix.ncols();

    let array_tokens = matrix.to_col_major_flat_array_tokens();

    //  TODO: Use quote_spanned instead??
    let output = quote! {
        nalgebra::DMatrix::<_>
            ::from_vec_storage(nalgebra::VecStorage::new(
                nalgebra::Dynamic::new(#row_dim),
                nalgebra::Dynamic::new(#col_dim),
                vec!#array_tokens))
    };

    proc_macro::TokenStream::from(output)
}

struct Vector {
    elements: Vec<Expr>,
}

impl Vector {
    fn to_array_tokens(&self) -> TokenStream2 {
        let mut data = TokenStream2::new();
        data.append_separated(&self.elements, Punct::new(',', Spacing::Alone));
        TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, data)))
    }

    fn len(&self) -> usize {
        self.elements.len()
    }
}

impl Parse for Vector {
    fn parse(input: ParseStream) -> Result<Self> {
        // The syntax of a vector is just the syntax of a single matrix row
        if input.is_empty() {
            Ok(Self {
                elements: Vec::new(),
            })
        } else {
            let elements = MatrixRowSyntax::parse_separated_nonempty(input)?
                .into_iter()
                .collect();
            Ok(Self { elements })
        }
    }
}

/// Construct a fixed-size column vector directly from data.
///
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
///
/// Similarly to [`matrix!`], this macro facilitates easy construction of fixed-size vectors.
/// However, whereas the [`matrix!`] macro expects each row to be separated by a semi-colon,
/// the syntax of this macro is instead similar to `vec!`, in that the elements of the vector
/// are simply listed consecutively.
///
/// `vector!` is intended to be the most readable and performant way of constructing small,
/// fixed-size vectors, and it is usable in `const fn` contexts.
///
/// ## Examples
///
/// ```
/// use nalgebra::vector;
///
/// // Produces a Vector3<_> == SVector<_, 3>
/// let v = vector![1, 2, 3];
/// ```
#[proc_macro]
pub fn vector(stream: TokenStream) -> TokenStream {
    let vector = parse_macro_input!(stream as Vector);
    let len = vector.len();
    let array_tokens = vector.to_array_tokens();
    let output = quote! {
        nalgebra::SVector::<_, #len>
            ::from_array_storage(nalgebra::ArrayStorage([#array_tokens]))
    };
    proc_macro::TokenStream::from(output)
}

/// Construct a dynamic column vector directly from data.
///
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
///
/// The syntax is exactly the same as for [`vector!`], but instead of producing instances of
/// `SVector`, it produces instances of `DVector`. At the moment it is not usable
/// in `const fn` contexts.
///
/// ```
/// use nalgebra::dvector;
///
/// // Produces a DVector<_>
/// let v = dvector![1, 2, 3];
/// ```
#[proc_macro]
pub fn dvector(stream: TokenStream) -> TokenStream {
    let vector = parse_macro_input!(stream as Vector);
    let len = vector.len();
    let array_tokens = vector.to_array_tokens();
    let output = quote! {
        nalgebra::DVector::<_>
            ::from_vec_storage(nalgebra::VecStorage::new(
                nalgebra::Dynamic::new(#len),
                nalgebra::Const::<1>,
                vec!#array_tokens))
    };
    proc_macro::TokenStream::from(output)
}

/// Construct a fixed-size point directly from data.
///
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
///
/// Similarly to [`vector!`], this macro facilitates easy construction of points.
///
/// `point!` is intended to be the most readable and performant way of constructing small,
/// points, and it is usable in `const fn` contexts.
///
/// ## Examples
///
/// ```
/// use nalgebra::point;
///
/// // Produces a Point3<_>
/// let v = point![1, 2, 3];
/// ```
#[proc_macro]
pub fn point(stream: TokenStream) -> TokenStream {
    let vector = parse_macro_input!(stream as Vector);
    let len = vector.len();
    let array_tokens = vector.to_array_tokens();
    let output = quote! {
        nalgebra::Point::<_, #len> {
            coords: nalgebra::SVector::<_, #len>
                        ::from_array_storage(nalgebra::ArrayStorage([#array_tokens]))
        }
    };
    proc_macro::TokenStream::from(output)
}