symphonia_bundle_mp3/layer3/hybrid_synthesis.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
// Justification: Some loops are better expressed without a range loop.
#![allow(clippy::needless_range_loop)]
use crate::common::FrameHeader;
use super::{common::*, GranuleChannel};
use std::{convert::TryInto, f64};
use lazy_static::lazy_static;
lazy_static! {
/// Hybrid synthesesis IMDCT window coefficients for: Long, Start, Short, and End block, in that
/// order.
///
/// For long blocks:
///
/// ```text
/// W[ 0..36] = sin(PI/36.0 * (i + 0.5))
/// ```
///
/// For start blocks:
///
/// ```text
/// W[ 0..18] = sin(PI/36.0 * (i + 0.5))
/// W[18..24] = 1.0
/// W[24..30] = sin(PI/12.0 * ((i - 18) - 0.5))
/// W[30..36] = 0.0
/// ```
///
/// For short blocks (to be applied to each 12 sample window):
///
/// ```text
/// W[ 0..12] = sin(PI/12.0 * (i + 0.5))
/// W[12..36] = 0.0
/// ```
///
/// For end blocks:
///
/// ```text
/// W[ 0..6 ] = 0.0
/// W[ 6..12] = sin(PI/12.0 * ((i - 6) + 0.5))
/// W[12..18] = 1.0
/// W[18..36] = sin(PI/36.0 * (i + 0.5))
/// ```
static ref IMDCT_WINDOWS: [[f32; 36]; 4] = {
const PI_36: f64 = f64::consts::PI / 36.0;
const PI_12: f64 = f64::consts::PI / 12.0;
let mut windows = [[0f32; 36]; 4];
// Window for Long blocks.
for i in 0..36 {
windows[0][i] = (PI_36 * (i as f64 + 0.5)).sin() as f32;
}
// Window for Start blocks (indicies 30..36 implictly 0.0).
for i in 0..18 {
windows[1][i] = (PI_36 * (i as f64 + 0.5)).sin() as f32;
}
for i in 18..24 {
windows[1][i] = 1.0;
}
for i in 24..30 {
windows[1][i] = (PI_12 * ((i - 18) as f64 + 0.5)).sin() as f32;
}
// Window for Short blocks.
for i in 0..12 {
windows[2][i] = (PI_12 * (i as f64 + 0.5)).sin() as f32;
}
// Window for End blocks (indicies 0..6 implicitly 0.0).
for i in 6..12 {
windows[3][i] = (PI_12 * ((i - 6) as f64 + 0.5)).sin() as f32;
}
for i in 12..18 {
windows[3][i] = 1.0;
}
for i in 18..36 {
windows[3][i] = (PI_36 * (i as f64 + 0.5)).sin() as f32;
}
windows
};
}
lazy_static! {
/// Lookup table of cosine coefficients for half of a 12-point IMDCT.
///
/// This table is derived from the general expression:
///
/// ```text
/// cos12[i][k] = cos(PI/24.0 * (2*i + 1 + N/2) * (2*k + 1))
/// ```
/// where:
/// `N=12`, `i=N/4..3N/4`, and `k=0..N/2`.
static ref IMDCT_HALF_COS_12: [[f32; 6]; 6] = {
const PI_24: f64 = f64::consts::PI / 24.0;
let mut cos = [[0f32; 6]; 6];
for (i, cos_i) in cos.iter_mut().enumerate() {
for (k, cos_ik) in cos_i.iter_mut().enumerate() {
// Only compute the middle half of the cosine lookup table (i offset by 3).
let n = (2 * (i + 3) + (12 / 2) + 1) * (2 * k + 1);
*cos_ik = (PI_24 * n as f64).cos() as f32;
}
}
cos
};
}
lazy_static! {
/// Pair of lookup tables, CS and CA, for alias reduction.
///
/// As per ISO/IEC 11172-3, CS and CA are calculated as follows:
///
/// ```text
/// cs[i] = 1.0 / sqrt(1.0 + c[i]^2)
/// ca[i] = c[i] / sqrt(1.0 + c[i]^2)
/// ```
///
/// where:
/// ```text
/// c[i] = [ -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 ]
/// ```
static ref ANTIALIAS_CS_CA: ([f32; 8], [f32; 8]) = {
const C: [f64; 8] = [ -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 ];
let mut cs = [0f32; 8];
let mut ca = [0f32; 8];
for i in 0..8 {
let sqrt = f64::sqrt(1.0 + (C[i] * C[i]));
cs[i] = (1.0 / sqrt) as f32;
ca[i] = (C[i] / sqrt) as f32;
}
(cs, ca)
};
}
/// Reorder samples that are part of short blocks into sub-band order.
pub(super) fn reorder(header: &FrameHeader, channel: &mut GranuleChannel, buf: &mut [f32; 576]) {
// Only short blocks are reordered.
if let BlockType::Short { is_mixed } = channel.block_type {
// Every short block is split into 3 equally sized windows as illustrated below (e.g. for
// a short scale factor band with win_len=4):
//
// <- Window #1 -> <- Window #2 -> <- Window #3 ->
// [ 0 | 1 | 2 | 3 ][ 4 | 5 | 6 | 7 ][ 8 | 9 | a | b ]
// <----- 3 * Short Scale Factor Band Width ----->
//
// Reordering interleaves the samples of each window as follows:
//
// [ 0 | 4 | 8 | 1 | 5 | 9 | 2 | 6 | a | 3 | 7 | b ]
// <---- 3 * Short Scale Factor Band Width ---->
//
// Basically, reordering interleaves the 3 windows the same way that 3 planar audio buffers
// would be interleaved.
debug_assert!(channel.rzero <= 576);
// In mixed blocks, only the short bands can be re-ordered. Determine the applicable bands.
let bands = if is_mixed {
let switch = SFB_MIXED_SWITCH_POINT[header.sample_rate_idx];
&SFB_MIXED_BANDS[header.sample_rate_idx][switch..]
}
else {
&SFB_SHORT_BANDS[header.sample_rate_idx]
};
let mut reorder_buf = [0f32; 576];
let start = bands[0];
let mut i = start;
for (((s0, s1), s2), s3) in
bands.iter().zip(&bands[1..]).zip(&bands[2..]).zip(&bands[3..]).step_by(3)
{
// Do not reorder short blocks that begin after the rzero partition boundary since
// they're zeroed.
if *s0 >= channel.rzero {
break;
}
// The three short sample windows.
let win0 = &buf[*s0..*s1];
let win1 = &buf[*s1..*s2];
let win2 = &buf[*s2..*s3];
// Interleave the three short sample windows.
for ((w0, w1), w2) in win0.iter().zip(win1).zip(win2) {
reorder_buf[i + 0] = *w0;
reorder_buf[i + 1] = *w1;
reorder_buf[i + 2] = *w2;
i += 3;
}
}
// Copy reordered samples from the reorder buffer to the actual sample buffer.
buf[start..i].copy_from_slice(&reorder_buf[start..i]);
// After reordering, the start of the rzero partition may no longer be valid. Update it.
channel.rzero = channel.rzero.max(i);
}
}
/// Applies the anti-aliasing filter to sub-bands that are not part of short blocks.
pub(super) fn antialias(channel: &mut GranuleChannel, samples: &mut [f32; 576]) {
// The maximum number of sub-bands to anti-alias depends on block type.
let sb_limit = match channel.block_type {
// Short blocks are never anti-aliased.
BlockType::Short { is_mixed: false } => return,
// Mixed blocks have a long block span the first 36 samples (2 sub-bands). Therefore, only
// anti-alias these two sub-bands.
BlockType::Short { is_mixed: true } => 2,
// All other block types require all 32 sub-bands to be anti-aliased.
_ => 32,
};
// Amortize the lazy_static fetch over the entire anti-aliasing operation.
let (cs, ca): &([f32; 8], [f32; 8]) = &ANTIALIAS_CS_CA;
// The sub-band that intersects the start of the rzero partition. All sub-bands after this one
// are zeroed and do-not need anti-aliasing.
let sb_rzero = channel.rzero / 18;
// The anti-aliasing filter must be applied up-to the last non-zero sub-band. After
// anti-aliasing, the first zeroed sub-band may have non-zero values "smeared" into it.
// Therefore, the rzero must be updated.
channel.rzero = 18 * sb_limit.min(sb_rzero + 2).min(32);
// Anti-aliasing is performed using 8 butterfly calculations at the boundaries of ADJACENT
// sub-bands. For each calculation, there are two samples: lower and upper. For each iteration,
// the lower sample index advances backwards from the boundary, while the upper sample index
// advances forward from the boundary.
//
// For example, let B(li, ui) represent the butterfly calculation where li and ui are the
// indicies of the lower and upper samples respectively. If j is the index of the first sample
// of a sub-band, then the iterations are as follows:
//
// B(j-1,j), B(j-2,j+1), B(j-3,j+2), B(j-4,j+3), B(j-5,j+4), B(j-6,j+5), B(j-7,j+6), B(j-8,j+7)
//
// The butterfly calculation itself can be illustrated as follows:
//
// * cs[i]
// l0 -------o------(-)------> l1
// \ / l1 = l0 * cs[i] - u0 * ca[i]
// \ / * ca[i] u1 = u0 * cs[i] + l0 * ca[i]
// \
// / \ * ca[i] where:
// / \ cs[i], ca[i] are constant values for iteration i,
// u0 ------o------(+)-------> u1 derived from table B.9 of ISO/IEC 11172-3.
// * cs[i]
//
// Note that all butterfly calculations only involve two samples, and all iterations are
// independant of each other. This lends itself well for SIMD processing.
for sb in (18..channel.rzero).step_by(18) {
for i in 0..8 {
let li = sb - 1 - i;
let ui = sb + i;
let lower = samples[li];
let upper = samples[ui];
samples[li] = lower * cs[i] - upper * ca[i];
samples[ui] = upper * cs[i] + lower * ca[i];
}
}
}
/// Performs hybrid synthesis (IMDCT and windowing).
pub(super) fn hybrid_synthesis(
channel: &GranuleChannel,
overlap: &mut [[f32; 18]; 32],
samples: &mut [f32; 576],
) {
// The first sub-band after the rzero partition boundary is the sub-band limit. All sub-bands
// past this are zeroed.
let sb_limit = (channel.rzero + 17) / 18;
// Determine the split point of long and short blocks in terms of a sub-band index.
//
// Short blocks process 0 sub-bands as long blocks, mixed blocks process the first 2 sub-bands
// as long blocks, and all other block types (long, start, end) process all 32 sub-bands as long
// blocks.
let sb_split = match channel.block_type {
BlockType::Short { is_mixed: false } => 0,
BlockType::Short { is_mixed: true } => 2,
_ => 32,
};
// If the split point is not 0, then some sub-bands need to be processed as long blocks using
// the 36-point IMDCT.
if sb_split > 0 {
// Select the appropriate window given the block type.
let window: &[f32; 36] = match channel.block_type {
BlockType::Start => &IMDCT_WINDOWS[1],
BlockType::End => &IMDCT_WINDOWS[3],
_ => &IMDCT_WINDOWS[0],
};
let sb_long_end = sb_split.min(sb_limit);
// For each of the sub-bands (18 samples each) in the long block...
for sb in 0..sb_long_end {
let start = 18 * sb;
// Casting to a slice of a known-size lets the compiler elide bounds checks.
let sub_band: &mut [f32; 18] = (&mut samples[start..(start + 18)]).try_into().unwrap();
// Perform the 36-point on the entire sub-band.
imdct36::imdct36(sub_band, window, &mut overlap[sb]);
}
}
// If the split point is less-than 32, then some sub-bands need to be processed as short blocks
// using the 12-point IMDCT on each of the three windows.
if sb_split < 32 {
// Select the short block window.
let window: &[f32; 36] = &IMDCT_WINDOWS[2];
let sb_short_begin = sb_split.min(sb_limit);
// For each of the sub-bands (18 samples each) in the short block...
for sb in sb_short_begin..sb_limit {
let start = 18 * sb;
// Casting to a slice of a known-size lets the compiler elide bounds checks.
let sub_band: &mut [f32; 18] = (&mut samples[start..(start + 18)]).try_into().unwrap();
// Perform the 12-point IMDCT on each of the 3 short windows within the sub-band (6
// samples each).
imdct12_win(sub_band, window, &mut overlap[sb]);
}
}
// Every sub-band after the the sub-band limit are zeroed, however, the overlap for that
// sub-band may be non-zero. Therefore, copy it over.
for sb in sb_limit..32 {
let start = 18 * sb;
let sub_band: &mut [f32; 18] = (&mut samples[start..(start + 18)]).try_into().unwrap();
sub_band.copy_from_slice(&overlap[sb]);
overlap[sb].fill(0.0);
}
}
/// Performs the 12-point IMDCT, and windowing for each of the 3 short windows of a short block, and
/// then overlap-adds the result.
fn imdct12_win(x: &mut [f32; 18], window: &[f32; 36], overlap: &mut [f32; 18]) {
let cos12: &[[f32; 6]; 6] = &IMDCT_HALF_COS_12;
let mut tmp = [0.0; 36];
for w in 0..3 {
for i in 0..3 {
// Compute the 12-point IMDCT for each of the 3 short windows using a half-size IMDCT
// followed by post-processing.
//
// In general, the IMDCT is defined as:
//
// (N/2)-1
// y[i] = SUM { x[k] * cos(PI/2N * (2i + 1 + N/2) * (2k + 1)) }
// k=0
//
// For N=12, the IMDCT becomes:
//
// 5
// y[i] = SUM { x[k] * cos(PI/24 * (2i + 7) * (2k + 1)) }
// k=0
//
// The cosine twiddle factors are easily indexable by i and k, and are therefore
// pre-computed and placed into a look-up table.
//
// Further, y[3..0] = -y[3..6], and y[12..9] = y[6..9] which reduces the amount of work
// by half.
//
// Therefore, it is possible to split the half-size IMDCT computation into two halves.
// In the calculations below, yl is the left-half output of the half-size IMDCT, and yr
// is the right-half.
let yl = (x[w] * cos12[i][0])
+ (x[3 * 1 + w] * cos12[i][1])
+ (x[3 * 2 + w] * cos12[i][2])
+ (x[3 * 3 + w] * cos12[i][3])
+ (x[3 * 4 + w] * cos12[i][4])
+ (x[3 * 5 + w] * cos12[i][5]);
let yr = (x[w] * cos12[i + 3][0])
+ (x[3 * 1 + w] * cos12[i + 3][1])
+ (x[3 * 2 + w] * cos12[i + 3][2])
+ (x[3 * 3 + w] * cos12[i + 3][3])
+ (x[3 * 4 + w] * cos12[i + 3][4])
+ (x[3 * 5 + w] * cos12[i + 3][5]);
// Each adjacent 12-point IMDCT windows are overlapped and added in the output, with the
// first and last 6 samples of the output always being 0.
//
// Each sample from the 12-point IMDCT is multiplied by the appropriate window function
// as specified in ISO/IEC 11172-3. The values of the window function are pre-computed
// and given by window[0..12].
//
// Since there are 3 IMDCT windows (indexed by w), y[0..12] is computed 3 times.
// For the purpose of the diagram below, we label these IMDCT windows as: y0[0..12],
// y1[0..12], and y2[0..12], for IMDCT windows 0..3 respectively.
//
// Therefore, the overlap-and-add operation can be visualized as below:
//
// 0 6 12 18 24 30 36
// +-------------+------------+------------+------------+------------+-------------+
// | 0 | y0[..6] | y0[..6] | y1[6..] | y2[6..] | 0 |
// | (6) | | + y1[6..] | + y2[..6] | | (6) |
// +-------------+------------+------------+------------+------------+-------------+
// . . . . . . .
// . +-------------------------+ . . .
// . | IMDCT #1 (y0) | . . .
// . +-------------------------+ . . .
// . . +-------------------------+ . .
// . . | IMDCT #2 (y1) | . .
// . . +-------------------------+ . .
// . . . +-------------------------+ .
// . . . | IMDCT #3 (y2) | .
// . . . +-------------------------+ .
// . . . . . . .
//
// Since the 12-point IMDCT was decomposed into a half-size IMDCT and post-processing
// operations, and further split into left and right halves, each iteration of this loop
// produces 4 output samples.
tmp[6 + 6 * w + 3 - i - 1] += -yl * window[3 - i - 1];
tmp[6 + 6 * w + i + 3] += yl * window[i + 3];
tmp[6 + 6 * w + i + 6] += yr * window[i + 6];
tmp[6 + 6 * w + 12 - i - 1] += yr * window[12 - i - 1];
}
}
// Overlap-add.
for i in 0..18 {
x[i] = tmp[i] + overlap[i];
overlap[i] = tmp[i + 18];
}
}
/// Inverts odd samples in odd sub-bands.
pub fn frequency_inversion(samples: &mut [f32; 576]) {
// There are 32 sub-bands spanning 576 samples:
//
// 0 18 36 54 72 90 108 558 576
// +-----+-----+-----+-----+-----+-----+ . . . . +------+
// s[i] = | sb0 | sb1 | sb2 | sb3 | sb4 | sb5 | . . . . | sb31 |
// +-----+-----+-----+-----+-----+-----+ . . . . +------+
//
// The odd sub-bands are thusly:
//
// sb1 -> s[ 18.. 36]
// sb3 -> s[ 54.. 72]
// sb5 -> s[ 90..108]
// ...
// sb31 -> s[558..576]
//
// Each odd sample in the aforementioned sub-bands must be negated.
for i in (18..576).step_by(36) {
// Sample negation is unrolled into a 2x4 + 1 (9) operation to improve vectorization.
for j in (i..i + 16).step_by(8) {
samples[j + 1] = -samples[j + 1];
samples[j + 3] = -samples[j + 3];
samples[j + 5] = -samples[j + 5];
samples[j + 7] = -samples[j + 7];
}
samples[i + 18 - 1] = -samples[i + 18 - 1];
}
}
#[cfg(test)]
mod tests {
use super::imdct12_win;
use super::IMDCT_WINDOWS;
use std::f64;
fn imdct12_analytical(x: &[f32; 6]) -> [f32; 12] {
const PI_24: f64 = f64::consts::PI / 24.0;
let mut result = [0f32; 12];
for i in 0..12 {
let mut sum = 0.0;
for k in 0..6 {
sum +=
(x[k] as f64) * (PI_24 * ((2 * i + (12 / 2) + 1) * (2 * k + 1)) as f64).cos();
}
result[i] = sum as f32;
}
result
}
#[test]
fn verify_imdct12_win() {
const TEST_VECTOR: [f32; 18] = [
0.0976, 0.9321, 0.6138, 0.0857, 0.0433, 0.4855, 0.2144, 0.8488, //
0.6889, 0.2983, 0.1957, 0.7037, 0.0052, 0.0197, 0.3188, 0.5123, //
0.2994, 0.7157,
];
let window = &IMDCT_WINDOWS[2];
let mut actual = TEST_VECTOR;
let mut overlap = [0.0; 18];
imdct12_win(&mut actual, window, &mut overlap);
// The following block performs 3 analytical 12-point IMDCTs over the test vector, and then
// windows and overlaps the results to generate the final result.
let expected = {
let mut expected = [0f32; 36];
let mut x0 = [0f32; 6];
let mut x1 = [0f32; 6];
let mut x2 = [0f32; 6];
for i in 0..6 {
x0[i] = TEST_VECTOR[3 * i + 0];
x1[i] = TEST_VECTOR[3 * i + 1];
x2[i] = TEST_VECTOR[3 * i + 2];
}
let imdct0 = imdct12_analytical(&x0);
let imdct1 = imdct12_analytical(&x1);
let imdct2 = imdct12_analytical(&x2);
for i in 0..12 {
expected[6 + i] += imdct0[i] * window[i];
expected[12 + i] += imdct1[i] * window[i];
expected[18 + i] += imdct2[i] * window[i];
}
expected
};
for i in 0..18 {
assert!((expected[i] - actual[i]).abs() < 0.00001);
assert!((expected[i + 18] - overlap[i]).abs() < 0.00001);
}
}
}
mod imdct36 {
/// Performs an Inverse Modified Discrete Cosine Transform (IMDCT) transforming 18
/// frequency-domain input samples, into 36 time-domain output samples.
///
/// This is a straight-forward implementation of the IMDCT using Szu-Wei Lee's algorithm
/// published in article [1].
///
/// [1] Szu-Wei Lee, "Improved algorithm for efficient computation of the forward and backward
/// MDCT in MPEG audio coder", IEEE Transactions on Circuits and Systems II: Analog and Digital
/// Signal Processing, vol. 48, no. 10, pp. 990-994, 2001.
///
/// https://ieeexplore.ieee.org/document/974789
pub fn imdct36(x: &mut [f32; 18], window: &[f32; 36], overlap: &mut [f32; 18]) {
let mut dct = [0f32; 18];
dct_iv(x, &mut dct);
// Mapping of DCT-IV to IMDCT
//
// 0 9 27 36
// +------------+------------------------+------------+
// | dct[9..18] | -dct[0..18].rev() | -dct[0..9] |
// +------------+------------------------+------------+
//
// where dct[] is the DCT-IV of x.
// First 9 IMDCT values are values 9..18 in the DCT-IV.
for i in 0..9 {
x[i] = overlap[i] + dct[9 + i] * window[i];
}
// Next 18 IMDCT values are negated and /reversed/ values 0..18 in the DCT-IV.
for i in 9..18 {
x[i] = overlap[i] - dct[27 - i - 1] * window[i];
}
for i in 18..27 {
overlap[i - 18] = -dct[27 - i - 1] * window[i];
}
// Last 9 IMDCT values are negated values 0..9 in the DCT-IV.
for i in 27..36 {
overlap[i - 18] = -dct[i - 27] * window[i];
}
}
/// Continutation of `imdct36`.
///
/// Step 2: Mapping N/2-point DCT-IV to N/2-point SDCT-II.
fn dct_iv(x: &[f32; 18], y: &mut [f32; 18]) {
// Scale factors for input samples. Computed from (16).
// 2 * cos(PI * (2*m + 1) / (2*36)
const SCALE: [f32; 18] = [
1.998_096_443_163_715_6, // m=0
1.982_889_722_747_620_8, // m=1
1.952_592_014_239_866_7, // m=2
1.907_433_901_496_453_9, // m=3
1.847_759_065_022_573_5, // m=4
1.774_021_666_356_443_4, // m=5
1.686_782_891_625_771_4, // m=6
1.586_706_680_582_470_6, // m=7
1.474_554_673_620_247_9, // m=8
1.351_180_415_231_320_7, // m=9
1.217_522_858_017_441_3, // m=10
1.074_599_216_693_647_8, // m=11
0.923_497_226_470_067_7, // m=12
0.765_366_864_730_179_7, // m=13
0.601_411_599_008_546_1, // m=14
0.432_879_227_876_205_8, // m=15
0.261_052_384_440_103_0, // m=16
0.087_238_774_730_672_0, // m=17
];
let samples = [
SCALE[0] * x[0],
SCALE[1] * x[1],
SCALE[2] * x[2],
SCALE[3] * x[3],
SCALE[4] * x[4],
SCALE[5] * x[5],
SCALE[6] * x[6],
SCALE[7] * x[7],
SCALE[8] * x[8],
SCALE[9] * x[9],
SCALE[10] * x[10],
SCALE[11] * x[11],
SCALE[12] * x[12],
SCALE[13] * x[13],
SCALE[14] * x[14],
SCALE[15] * x[15],
SCALE[16] * x[16],
SCALE[17] * x[17],
];
sdct_ii_18(&samples, y);
y[0] /= 2.0;
for i in 1..17 {
y[i] = (y[i] / 2.0) - y[i - 1];
}
y[17] = (y[17] / 2.0) - y[16];
}
/// Continutation of `imdct36`.
///
/// Step 3: Decompose N/2-point SDCT-II into two N/4-point SDCT-IIs.
fn sdct_ii_18(x: &[f32; 18], y: &mut [f32; 18]) {
// Scale factors for odd input samples. Computed from (23).
// 2 * cos(PI * (2*m + 1) / 36)
const SCALE: [f32; 9] = [
1.992_389_396_183_491_1, // m=0
1.931_851_652_578_136_6, // m=1
1.812_615_574_073_299_9, // m=2
1.638_304_088_577_983_6, // m=3
std::f32::consts::SQRT_2, // m=4
1.147_152_872_702_092_3, // m=5
0.845_236_523_481_398_9, // m=6
0.517_638_090_205_041_9, // m=7
0.174_311_485_495_316_3, // m=8
];
let even = [
x[0] + x[18 - 1],
x[1] + x[18 - 2],
x[2] + x[18 - 3],
x[3] + x[18 - 4],
x[4] + x[18 - 5],
x[5] + x[18 - 6],
x[6] + x[18 - 7],
x[7] + x[18 - 8],
x[8] + x[18 - 9],
];
sdct_ii_9(&even, y);
let odd = [
SCALE[0] * (x[0] - x[18 - 1]),
SCALE[1] * (x[1] - x[18 - 2]),
SCALE[2] * (x[2] - x[18 - 3]),
SCALE[3] * (x[3] - x[18 - 4]),
SCALE[4] * (x[4] - x[18 - 5]),
SCALE[5] * (x[5] - x[18 - 6]),
SCALE[6] * (x[6] - x[18 - 7]),
SCALE[7] * (x[7] - x[18 - 8]),
SCALE[8] * (x[8] - x[18 - 9]),
];
sdct_ii_9(&odd, &mut y[1..]);
y[3] -= y[3 - 2];
y[5] -= y[5 - 2];
y[7] -= y[7 - 2];
y[9] -= y[9 - 2];
y[11] -= y[11 - 2];
y[13] -= y[13 - 2];
y[15] -= y[15 - 2];
y[17] -= y[17 - 2];
}
/// Continutation of `imdct36`.
///
/// Step 4: Computation of 9-point (N/4) SDCT-II.
fn sdct_ii_9(x: &[f32; 9], y: &mut [f32]) {
const D: [f32; 7] = [
-1.732_050_807_568_877_2, // -sqrt(3.0)
1.879_385_241_571_816_6, // -2.0 * cos(8.0 * PI / 9.0)
-0.347_296_355_333_860_8, // -2.0 * cos(4.0 * PI / 9.0)
-1.532_088_886_237_956_0, // -2.0 * cos(2.0 * PI / 9.0)
-0.684_040_286_651_337_8, // -2.0 * sin(8.0 * PI / 9.0)
-1.969_615_506_024_416_0, // -2.0 * sin(4.0 * PI / 9.0)
-1.285_575_219_373_078_5, // -2.0 * sin(2.0 * PI / 9.0)
];
let a01 = x[3] + x[5];
let a02 = x[3] - x[5];
let a03 = x[6] + x[2];
let a04 = x[6] - x[2];
let a05 = x[1] + x[7];
let a06 = x[1] - x[7];
let a07 = x[8] + x[0];
let a08 = x[8] - x[0];
let a09 = x[4] + a05;
let a10 = a01 + a03;
let a11 = a10 + a07;
let a12 = a03 - a07;
let a13 = a01 - a07;
let a14 = a01 - a03;
let a15 = a02 - a04;
let a16 = a15 + a08;
let a17 = a04 + a08;
let a18 = a02 - a08;
let a19 = a02 + a04;
let a20 = 2.0 * x[4] - a05;
let m1 = D[0] * a06;
let m2 = D[1] * a12;
let m3 = D[2] * a13;
let m4 = D[3] * a14;
let m5 = D[0] * a16;
let m6 = D[4] * a17;
let m7 = D[5] * a18; // Note: the cited paper has an error, a1 should be a18.
let m8 = D[6] * a19;
let a21 = a20 + m2;
let a22 = a20 - m2;
let a23 = a20 + m3;
let a24 = m1 + m6;
let a25 = m1 - m6;
let a26 = m1 + m7;
y[0] = a09 + a11;
y[2] = m8 - a26;
y[4] = m4 - a21;
y[6] = m5;
y[8] = a22 - m3;
y[10] = a25 - m7;
y[12] = a11 - 2.0 * a09;
y[14] = a24 + m8;
y[16] = a23 + m4;
}
#[cfg(test)]
mod tests {
use super::imdct36;
use std::f64;
fn imdct36_analytical(x: &[f32; 18]) -> [f32; 36] {
let mut result = [0f32; 36];
const PI_72: f64 = f64::consts::PI / 72.0;
for i in 0..36 {
let mut sum = 0.0;
for j in 0..18 {
sum +=
(x[j] as f64) * (PI_72 * (((2 * i) + 1 + 18) * ((2 * j) + 1)) as f64).cos();
}
result[i] = sum as f32;
}
result
}
#[test]
fn verify_imdct36() {
const TEST_VECTOR: [f32; 18] = [
0.0976, 0.9321, 0.6138, 0.0857, 0.0433, 0.4855, 0.2144, 0.8488, //
0.6889, 0.2983, 0.1957, 0.7037, 0.0052, 0.0197, 0.3188, 0.5123, //
0.2994, 0.7157,
];
const WINDOW: [f32; 36] = [1.0; 36];
let mut actual = TEST_VECTOR;
let mut overlap = [0.0; 18];
imdct36(&mut actual, &WINDOW, &mut overlap);
let expected = imdct36_analytical(&TEST_VECTOR);
for i in 0..18 {
assert!((expected[i] - actual[i]).abs() < 0.00001);
assert!((expected[i + 18] - overlap[i]).abs() < 0.00001);
}
}
}
}