symphonia_bundle_mp3/layer3/
hybrid_synthesis.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

// Justification: Some loops are better expressed without a range loop.
#![allow(clippy::needless_range_loop)]

use crate::common::FrameHeader;

use super::{common::*, GranuleChannel};

use std::{convert::TryInto, f64};

use lazy_static::lazy_static;

lazy_static! {
    /// Hybrid synthesesis IMDCT window coefficients for: Long, Start, Short, and End block, in that
    /// order.
    ///
    /// For long blocks:
    ///
    /// ```text
    /// W[ 0..36] = sin(PI/36.0 * (i + 0.5))
    /// ```
    ///
    /// For start blocks:
    ///
    /// ```text
    /// W[ 0..18] = sin(PI/36.0 * (i + 0.5))
    /// W[18..24] = 1.0
    /// W[24..30] = sin(PI/12.0 * ((i - 18) - 0.5))
    /// W[30..36] = 0.0
    /// ```
    ///
    /// For short blocks (to be applied to each 12 sample window):
    ///
    /// ```text
    /// W[ 0..12] = sin(PI/12.0 * (i + 0.5))
    /// W[12..36] = 0.0
    /// ```
    ///
    /// For end blocks:
    ///
    /// ```text
    /// W[ 0..6 ] = 0.0
    /// W[ 6..12] = sin(PI/12.0 * ((i - 6) + 0.5))
    /// W[12..18] = 1.0
    /// W[18..36] = sin(PI/36.0 * (i + 0.5))
    /// ```
    static ref IMDCT_WINDOWS: [[f32; 36]; 4] = {
        const PI_36: f64 = f64::consts::PI / 36.0;
        const PI_12: f64 = f64::consts::PI / 12.0;

        let mut windows = [[0f32; 36]; 4];

        // Window for Long blocks.
        for i in 0..36 {
            windows[0][i] = (PI_36 * (i as f64 + 0.5)).sin() as f32;
        }

        // Window for Start blocks (indicies 30..36 implictly 0.0).
        for i in 0..18 {
            windows[1][i] = (PI_36 * (i as f64 + 0.5)).sin() as f32;
        }
        for i in 18..24 {
            windows[1][i] = 1.0;
        }
        for i in 24..30 {
            windows[1][i] = (PI_12 * ((i - 18) as f64 + 0.5)).sin() as f32;
        }

        // Window for Short blocks.
        for i in 0..12 {
            windows[2][i] = (PI_12 * (i as f64 + 0.5)).sin() as f32;
        }

        // Window for End blocks (indicies 0..6 implicitly 0.0).
        for i in 6..12 {
            windows[3][i] = (PI_12 * ((i - 6) as f64 + 0.5)).sin() as f32;
        }
        for i in 12..18 {
            windows[3][i] = 1.0;
        }
        for i in 18..36 {
            windows[3][i] = (PI_36 * (i as f64 + 0.5)).sin() as f32;
        }

        windows
   };
}

lazy_static! {
    /// Lookup table of cosine coefficients for half of a 12-point IMDCT.
    ///
    /// This table is derived from the general expression:
    ///
    /// ```text
    /// cos12[i][k] = cos(PI/24.0 * (2*i + 1 + N/2) * (2*k + 1))
    /// ```
    /// where:
    ///     `N=12`, `i=N/4..3N/4`, and `k=0..N/2`.
    static ref IMDCT_HALF_COS_12: [[f32; 6]; 6] = {
        const PI_24: f64 = f64::consts::PI / 24.0;

        let mut cos = [[0f32; 6]; 6];

        for (i, cos_i) in cos.iter_mut().enumerate() {
            for (k, cos_ik) in cos_i.iter_mut().enumerate() {
                // Only compute the middle half of the cosine lookup table (i offset by 3).
                let n = (2 * (i + 3) + (12 / 2) + 1) * (2 * k + 1);
                *cos_ik = (PI_24 * n as f64).cos() as f32;
            }
        }

        cos
    };
}

lazy_static! {
    /// Pair of lookup tables, CS and CA, for alias reduction.
    ///
    /// As per ISO/IEC 11172-3, CS and CA are calculated as follows:
    ///
    /// ```text
    /// cs[i] =  1.0 / sqrt(1.0 + c[i]^2)
    /// ca[i] = c[i] / sqrt(1.0 + c[i]^2)
    /// ```
    ///
    /// where:
    /// ```text
    /// c[i] = [ -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 ]
    /// ```
    static ref ANTIALIAS_CS_CA: ([f32; 8], [f32; 8]) = {
        const C: [f64; 8] = [ -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 ];

        let mut cs = [0f32; 8];
        let mut ca = [0f32; 8];

        for i in 0..8 {
            let sqrt = f64::sqrt(1.0 + (C[i] * C[i]));
            cs[i] = (1.0 / sqrt) as f32;
            ca[i] = (C[i] / sqrt) as f32;
        }

        (cs, ca)
    };
}

/// Reorder samples that are part of short blocks into sub-band order.
pub(super) fn reorder(header: &FrameHeader, channel: &mut GranuleChannel, buf: &mut [f32; 576]) {
    // Only short blocks are reordered.
    if let BlockType::Short { is_mixed } = channel.block_type {
        // Every short block is split into 3 equally sized windows as illustrated below (e.g. for
        // a short scale factor band with win_len=4):
        //
        //    <- Window #1 ->  <- Window #2 ->  <- Window #3 ->
        //   [ 0 | 1 | 2 | 3 ][ 4 | 5 | 6 | 7 ][ 8 | 9 | a | b ]
        //    <-----  3 * Short Scale Factor Band Width  ----->
        //
        // Reordering interleaves the samples of each window as follows:
        //
        //   [ 0 | 4 | 8 | 1 | 5 | 9 | 2 | 6 | a | 3 | 7 | b ]
        //    <----  3 * Short Scale Factor Band Width  ---->
        //
        // Basically, reordering interleaves the 3 windows the same way that 3 planar audio buffers
        // would be interleaved.
        debug_assert!(channel.rzero <= 576);

        // In mixed blocks, only the short bands can be re-ordered. Determine the applicable bands.
        let bands = if is_mixed {
            let switch = SFB_MIXED_SWITCH_POINT[header.sample_rate_idx];
            &SFB_MIXED_BANDS[header.sample_rate_idx][switch..]
        }
        else {
            &SFB_SHORT_BANDS[header.sample_rate_idx]
        };

        let mut reorder_buf = [0f32; 576];

        let start = bands[0];
        let mut i = start;

        for (((s0, s1), s2), s3) in
            bands.iter().zip(&bands[1..]).zip(&bands[2..]).zip(&bands[3..]).step_by(3)
        {
            // Do not reorder short blocks that begin after the rzero partition boundary since
            // they're zeroed.
            if *s0 >= channel.rzero {
                break;
            }

            // The three short sample windows.
            let win0 = &buf[*s0..*s1];
            let win1 = &buf[*s1..*s2];
            let win2 = &buf[*s2..*s3];

            // Interleave the three short sample windows.
            for ((w0, w1), w2) in win0.iter().zip(win1).zip(win2) {
                reorder_buf[i + 0] = *w0;
                reorder_buf[i + 1] = *w1;
                reorder_buf[i + 2] = *w2;
                i += 3;
            }
        }

        // Copy reordered samples from the reorder buffer to the actual sample buffer.
        buf[start..i].copy_from_slice(&reorder_buf[start..i]);

        // After reordering, the start of the rzero partition may no longer be valid. Update it.
        channel.rzero = channel.rzero.max(i);
    }
}

/// Applies the anti-aliasing filter to sub-bands that are not part of short blocks.
pub(super) fn antialias(channel: &mut GranuleChannel, samples: &mut [f32; 576]) {
    // The maximum number of sub-bands to anti-alias depends on block type.
    let sb_limit = match channel.block_type {
        // Short blocks are never anti-aliased.
        BlockType::Short { is_mixed: false } => return,
        // Mixed blocks have a long block span the first 36 samples (2 sub-bands). Therefore, only
        // anti-alias these two sub-bands.
        BlockType::Short { is_mixed: true } => 2,
        // All other block types require all 32 sub-bands to be anti-aliased.
        _ => 32,
    };

    // Amortize the lazy_static fetch over the entire anti-aliasing operation.
    let (cs, ca): &([f32; 8], [f32; 8]) = &ANTIALIAS_CS_CA;

    // The sub-band that intersects the start of the rzero partition. All sub-bands after this one
    // are zeroed and do-not need anti-aliasing.
    let sb_rzero = channel.rzero / 18;

    // The anti-aliasing filter must be applied up-to the last non-zero sub-band. After
    // anti-aliasing, the first zeroed sub-band may have non-zero values "smeared" into it.
    // Therefore, the rzero must be updated.
    channel.rzero = 18 * sb_limit.min(sb_rzero + 2).min(32);

    // Anti-aliasing is performed using 8 butterfly calculations at the boundaries of ADJACENT
    // sub-bands. For each calculation, there are two samples: lower and upper. For each iteration,
    // the lower sample index advances backwards from the boundary, while the upper sample index
    // advances forward from the boundary.
    //
    // For example, let B(li, ui) represent the butterfly calculation where li and ui are the
    // indicies of the lower and upper samples respectively. If j is the index of the first sample
    // of a sub-band, then the iterations are as follows:
    //
    // B(j-1,j), B(j-2,j+1), B(j-3,j+2), B(j-4,j+3), B(j-5,j+4), B(j-6,j+5), B(j-7,j+6), B(j-8,j+7)
    //
    // The butterfly calculation itself can be illustrated as follows:
    //
    //              * cs[i]
    //   l0 -------o------(-)------> l1
    //               \    /                  l1 = l0 * cs[i] - u0 * ca[i]
    //                \  / * ca[i]           u1 = u0 * cs[i] + l0 * ca[i]
    //                 \
    //               /  \  * ca[i]           where:
    //             /     \                       cs[i], ca[i] are constant values for iteration i,
    //   u0 ------o------(+)-------> u1          derived from table B.9 of ISO/IEC 11172-3.
    //             * cs[i]
    //
    // Note that all butterfly calculations only involve two samples, and all iterations are
    // independant of each other. This lends itself well for SIMD processing.
    for sb in (18..channel.rzero).step_by(18) {
        for i in 0..8 {
            let li = sb - 1 - i;
            let ui = sb + i;
            let lower = samples[li];
            let upper = samples[ui];
            samples[li] = lower * cs[i] - upper * ca[i];
            samples[ui] = upper * cs[i] + lower * ca[i];
        }
    }
}

/// Performs hybrid synthesis (IMDCT and windowing).
pub(super) fn hybrid_synthesis(
    channel: &GranuleChannel,
    overlap: &mut [[f32; 18]; 32],
    samples: &mut [f32; 576],
) {
    // The first sub-band after the rzero partition boundary is the sub-band limit. All sub-bands
    // past this are zeroed.
    let sb_limit = (channel.rzero + 17) / 18;

    // Determine the split point of long and short blocks in terms of a sub-band index.
    //
    // Short blocks process 0 sub-bands as long blocks, mixed blocks process the first 2 sub-bands
    // as long blocks, and all other block types (long, start, end) process all 32 sub-bands as long
    // blocks.
    let sb_split = match channel.block_type {
        BlockType::Short { is_mixed: false } => 0,
        BlockType::Short { is_mixed: true } => 2,
        _ => 32,
    };

    // If the split point is not 0, then some sub-bands need to be processed as long blocks using
    // the 36-point IMDCT.
    if sb_split > 0 {
        // Select the appropriate window given the block type.
        let window: &[f32; 36] = match channel.block_type {
            BlockType::Start => &IMDCT_WINDOWS[1],
            BlockType::End => &IMDCT_WINDOWS[3],
            _ => &IMDCT_WINDOWS[0],
        };

        let sb_long_end = sb_split.min(sb_limit);

        // For each of the sub-bands (18 samples each) in the long block...
        for sb in 0..sb_long_end {
            let start = 18 * sb;

            // Casting to a slice of a known-size lets the compiler elide bounds checks.
            let sub_band: &mut [f32; 18] = (&mut samples[start..(start + 18)]).try_into().unwrap();

            // Perform the 36-point on the entire sub-band.
            imdct36::imdct36(sub_band, window, &mut overlap[sb]);
        }
    }

    // If the split point is less-than 32, then some sub-bands need to be processed as short blocks
    // using the 12-point IMDCT on each of the three windows.
    if sb_split < 32 {
        // Select the short block window.
        let window: &[f32; 36] = &IMDCT_WINDOWS[2];

        let sb_short_begin = sb_split.min(sb_limit);

        // For each of the sub-bands (18 samples each) in the short block...
        for sb in sb_short_begin..sb_limit {
            let start = 18 * sb;

            // Casting to a slice of a known-size lets the compiler elide bounds checks.
            let sub_band: &mut [f32; 18] = (&mut samples[start..(start + 18)]).try_into().unwrap();

            // Perform the 12-point IMDCT on each of the 3 short windows within the sub-band (6
            // samples each).
            imdct12_win(sub_band, window, &mut overlap[sb]);
        }
    }

    // Every sub-band after the the sub-band limit are zeroed, however, the overlap for that
    // sub-band may be non-zero. Therefore, copy it over.
    for sb in sb_limit..32 {
        let start = 18 * sb;
        let sub_band: &mut [f32; 18] = (&mut samples[start..(start + 18)]).try_into().unwrap();

        sub_band.copy_from_slice(&overlap[sb]);
        overlap[sb].fill(0.0);
    }
}

/// Performs the 12-point IMDCT, and windowing for each of the 3 short windows of a short block, and
/// then overlap-adds the result.
fn imdct12_win(x: &mut [f32; 18], window: &[f32; 36], overlap: &mut [f32; 18]) {
    let cos12: &[[f32; 6]; 6] = &IMDCT_HALF_COS_12;

    let mut tmp = [0.0; 36];

    for w in 0..3 {
        for i in 0..3 {
            // Compute the 12-point IMDCT for each of the 3 short windows using a half-size IMDCT
            // followed by post-processing.
            //
            // In general, the IMDCT is defined as:
            //
            //        (N/2)-1
            // y[i] =   SUM   { x[k] * cos(PI/2N * (2i + 1 + N/2) * (2k + 1)) }
            //          k=0
            //
            // For N=12, the IMDCT becomes:
            //
            //         5
            // y[i] = SUM { x[k] * cos(PI/24 * (2i + 7) * (2k + 1)) }
            //        k=0
            //
            // The cosine twiddle factors are easily indexable by i and k, and are therefore
            // pre-computed and placed into a look-up table.
            //
            // Further, y[3..0] = -y[3..6], and y[12..9] = y[6..9] which reduces the amount of work
            // by half.
            //
            // Therefore, it is possible to split the half-size IMDCT computation into two halves.
            // In the calculations below, yl is the left-half output of the half-size IMDCT, and yr
            // is the right-half.

            let yl = (x[w] * cos12[i][0])
                + (x[3 * 1 + w] * cos12[i][1])
                + (x[3 * 2 + w] * cos12[i][2])
                + (x[3 * 3 + w] * cos12[i][3])
                + (x[3 * 4 + w] * cos12[i][4])
                + (x[3 * 5 + w] * cos12[i][5]);

            let yr = (x[w] * cos12[i + 3][0])
                + (x[3 * 1 + w] * cos12[i + 3][1])
                + (x[3 * 2 + w] * cos12[i + 3][2])
                + (x[3 * 3 + w] * cos12[i + 3][3])
                + (x[3 * 4 + w] * cos12[i + 3][4])
                + (x[3 * 5 + w] * cos12[i + 3][5]);

            // Each adjacent 12-point IMDCT windows are overlapped and added in the output, with the
            // first and last 6 samples of the output always being 0.
            //
            // Each sample from the 12-point IMDCT is multiplied by the appropriate window function
            // as specified in ISO/IEC 11172-3. The values of the window function are pre-computed
            // and given by window[0..12].
            //
            // Since there are 3 IMDCT windows (indexed by w), y[0..12] is computed 3 times.
            // For the purpose of the diagram below, we label these IMDCT windows as: y0[0..12],
            // y1[0..12], and y2[0..12], for IMDCT windows 0..3 respectively.
            //
            // Therefore, the overlap-and-add operation can be visualized as below:
            //
            // 0             6           12           18           24           30            36
            // +-------------+------------+------------+------------+------------+-------------+
            // |      0      |  y0[..6]   |  y0[..6]   |  y1[6..]   |  y2[6..]   |      0      |
            // |     (6)     |            |  + y1[6..] |  + y2[..6] |            |     (6)     |
            // +-------------+------------+------------+------------+------------+-------------+
            // .             .            .            .            .            .             .
            // .             +-------------------------+            .            .             .
            // .             |      IMDCT #1 (y0)      |            .            .             .
            // .             +-------------------------+            .            .             .
            // .             .            +-------------------------+            .             .
            // .             .            |      IMDCT #2 (y1)      |            .             .
            // .             .            +-------------------------+            .             .
            // .             .            .            +-------------------------+             .
            // .             .            .            |      IMDCT #3 (y2)      |             .
            // .             .            .            +-------------------------+             .
            // .             .            .            .            .            .             .
            //
            // Since the 12-point IMDCT was decomposed into a half-size IMDCT and post-processing
            // operations, and further split into left and right halves, each iteration of this loop
            // produces 4 output samples.

            tmp[6 + 6 * w + 3 - i - 1] += -yl * window[3 - i - 1];
            tmp[6 + 6 * w + i + 3] += yl * window[i + 3];
            tmp[6 + 6 * w + i + 6] += yr * window[i + 6];
            tmp[6 + 6 * w + 12 - i - 1] += yr * window[12 - i - 1];
        }
    }

    // Overlap-add.
    for i in 0..18 {
        x[i] = tmp[i] + overlap[i];
        overlap[i] = tmp[i + 18];
    }
}

/// Inverts odd samples in odd sub-bands.
pub fn frequency_inversion(samples: &mut [f32; 576]) {
    // There are 32 sub-bands spanning 576 samples:
    //
    //        0    18    36    54    72    90   108       558    576
    //        +-----+-----+-----+-----+-----+-----+ . . . . +------+
    // s[i] = | sb0 | sb1 | sb2 | sb3 | sb4 | sb5 | . . . . | sb31 |
    //        +-----+-----+-----+-----+-----+-----+ . . . . +------+
    //
    // The odd sub-bands are thusly:
    //
    //      sb1  -> s[ 18.. 36]
    //      sb3  -> s[ 54.. 72]
    //      sb5  -> s[ 90..108]
    //      ...
    //      sb31 -> s[558..576]
    //
    // Each odd sample in the aforementioned sub-bands must be negated.
    for i in (18..576).step_by(36) {
        // Sample negation is unrolled into a 2x4 + 1 (9) operation to improve vectorization.
        for j in (i..i + 16).step_by(8) {
            samples[j + 1] = -samples[j + 1];
            samples[j + 3] = -samples[j + 3];
            samples[j + 5] = -samples[j + 5];
            samples[j + 7] = -samples[j + 7];
        }
        samples[i + 18 - 1] = -samples[i + 18 - 1];
    }
}

#[cfg(test)]
mod tests {
    use super::imdct12_win;
    use super::IMDCT_WINDOWS;
    use std::f64;

    fn imdct12_analytical(x: &[f32; 6]) -> [f32; 12] {
        const PI_24: f64 = f64::consts::PI / 24.0;

        let mut result = [0f32; 12];

        for i in 0..12 {
            let mut sum = 0.0;
            for k in 0..6 {
                sum +=
                    (x[k] as f64) * (PI_24 * ((2 * i + (12 / 2) + 1) * (2 * k + 1)) as f64).cos();
            }
            result[i] = sum as f32;
        }

        result
    }

    #[test]
    fn verify_imdct12_win() {
        const TEST_VECTOR: [f32; 18] = [
            0.0976, 0.9321, 0.6138, 0.0857, 0.0433, 0.4855, 0.2144, 0.8488, //
            0.6889, 0.2983, 0.1957, 0.7037, 0.0052, 0.0197, 0.3188, 0.5123, //
            0.2994, 0.7157,
        ];

        let window = &IMDCT_WINDOWS[2];

        let mut actual = TEST_VECTOR;
        let mut overlap = [0.0; 18];
        imdct12_win(&mut actual, window, &mut overlap);

        // The following block performs 3 analytical 12-point IMDCTs over the test vector, and then
        // windows and overlaps the results to generate the final result.
        let expected = {
            let mut expected = [0f32; 36];

            let mut x0 = [0f32; 6];
            let mut x1 = [0f32; 6];
            let mut x2 = [0f32; 6];

            for i in 0..6 {
                x0[i] = TEST_VECTOR[3 * i + 0];
                x1[i] = TEST_VECTOR[3 * i + 1];
                x2[i] = TEST_VECTOR[3 * i + 2];
            }

            let imdct0 = imdct12_analytical(&x0);
            let imdct1 = imdct12_analytical(&x1);
            let imdct2 = imdct12_analytical(&x2);

            for i in 0..12 {
                expected[6 + i] += imdct0[i] * window[i];
                expected[12 + i] += imdct1[i] * window[i];
                expected[18 + i] += imdct2[i] * window[i];
            }

            expected
        };

        for i in 0..18 {
            assert!((expected[i] - actual[i]).abs() < 0.00001);
            assert!((expected[i + 18] - overlap[i]).abs() < 0.00001);
        }
    }
}

mod imdct36 {
    /// Performs an Inverse Modified Discrete Cosine Transform (IMDCT) transforming 18
    /// frequency-domain input samples, into 36 time-domain output samples.
    ///
    /// This is a straight-forward implementation of the IMDCT using Szu-Wei Lee's algorithm
    /// published in article [1].
    ///
    /// [1] Szu-Wei Lee, "Improved algorithm for efficient computation of the forward and backward
    /// MDCT in MPEG audio coder", IEEE Transactions on Circuits and Systems II: Analog and Digital
    /// Signal Processing, vol. 48, no. 10, pp. 990-994, 2001.
    ///
    /// https://ieeexplore.ieee.org/document/974789
    pub fn imdct36(x: &mut [f32; 18], window: &[f32; 36], overlap: &mut [f32; 18]) {
        let mut dct = [0f32; 18];

        dct_iv(x, &mut dct);

        // Mapping of DCT-IV to IMDCT
        //
        //  0            9                       27           36
        //  +------------+------------------------+------------+
        //  | dct[9..18] | -dct[0..18].rev()      | -dct[0..9] |
        //  +------------+------------------------+------------+
        //
        // where dct[] is the DCT-IV of x.

        // First 9 IMDCT values are values 9..18 in the DCT-IV.
        for i in 0..9 {
            x[i] = overlap[i] + dct[9 + i] * window[i];
        }

        // Next 18 IMDCT values are negated and /reversed/ values 0..18 in the DCT-IV.
        for i in 9..18 {
            x[i] = overlap[i] - dct[27 - i - 1] * window[i];
        }

        for i in 18..27 {
            overlap[i - 18] = -dct[27 - i - 1] * window[i];
        }

        // Last 9 IMDCT values are negated values 0..9 in the DCT-IV.
        for i in 27..36 {
            overlap[i - 18] = -dct[i - 27] * window[i];
        }
    }

    /// Continutation of `imdct36`.
    ///
    /// Step 2: Mapping N/2-point DCT-IV to N/2-point SDCT-II.
    fn dct_iv(x: &[f32; 18], y: &mut [f32; 18]) {
        // Scale factors for input samples. Computed from (16).
        // 2 * cos(PI * (2*m + 1) / (2*36)
        const SCALE: [f32; 18] = [
            1.998_096_443_163_715_6, // m=0
            1.982_889_722_747_620_8, // m=1
            1.952_592_014_239_866_7, // m=2
            1.907_433_901_496_453_9, // m=3
            1.847_759_065_022_573_5, // m=4
            1.774_021_666_356_443_4, // m=5
            1.686_782_891_625_771_4, // m=6
            1.586_706_680_582_470_6, // m=7
            1.474_554_673_620_247_9, // m=8
            1.351_180_415_231_320_7, // m=9
            1.217_522_858_017_441_3, // m=10
            1.074_599_216_693_647_8, // m=11
            0.923_497_226_470_067_7, // m=12
            0.765_366_864_730_179_7, // m=13
            0.601_411_599_008_546_1, // m=14
            0.432_879_227_876_205_8, // m=15
            0.261_052_384_440_103_0, // m=16
            0.087_238_774_730_672_0, // m=17
        ];

        let samples = [
            SCALE[0] * x[0],
            SCALE[1] * x[1],
            SCALE[2] * x[2],
            SCALE[3] * x[3],
            SCALE[4] * x[4],
            SCALE[5] * x[5],
            SCALE[6] * x[6],
            SCALE[7] * x[7],
            SCALE[8] * x[8],
            SCALE[9] * x[9],
            SCALE[10] * x[10],
            SCALE[11] * x[11],
            SCALE[12] * x[12],
            SCALE[13] * x[13],
            SCALE[14] * x[14],
            SCALE[15] * x[15],
            SCALE[16] * x[16],
            SCALE[17] * x[17],
        ];

        sdct_ii_18(&samples, y);

        y[0] /= 2.0;
        for i in 1..17 {
            y[i] = (y[i] / 2.0) - y[i - 1];
        }
        y[17] = (y[17] / 2.0) - y[16];
    }

    /// Continutation of `imdct36`.
    ///
    /// Step 3: Decompose N/2-point SDCT-II into two N/4-point SDCT-IIs.
    fn sdct_ii_18(x: &[f32; 18], y: &mut [f32; 18]) {
        // Scale factors for odd input samples. Computed from (23).
        // 2 * cos(PI * (2*m + 1) / 36)
        const SCALE: [f32; 9] = [
            1.992_389_396_183_491_1,  // m=0
            1.931_851_652_578_136_6,  // m=1
            1.812_615_574_073_299_9,  // m=2
            1.638_304_088_577_983_6,  // m=3
            std::f32::consts::SQRT_2, // m=4
            1.147_152_872_702_092_3,  // m=5
            0.845_236_523_481_398_9,  // m=6
            0.517_638_090_205_041_9,  // m=7
            0.174_311_485_495_316_3,  // m=8
        ];

        let even = [
            x[0] + x[18 - 1],
            x[1] + x[18 - 2],
            x[2] + x[18 - 3],
            x[3] + x[18 - 4],
            x[4] + x[18 - 5],
            x[5] + x[18 - 6],
            x[6] + x[18 - 7],
            x[7] + x[18 - 8],
            x[8] + x[18 - 9],
        ];

        sdct_ii_9(&even, y);

        let odd = [
            SCALE[0] * (x[0] - x[18 - 1]),
            SCALE[1] * (x[1] - x[18 - 2]),
            SCALE[2] * (x[2] - x[18 - 3]),
            SCALE[3] * (x[3] - x[18 - 4]),
            SCALE[4] * (x[4] - x[18 - 5]),
            SCALE[5] * (x[5] - x[18 - 6]),
            SCALE[6] * (x[6] - x[18 - 7]),
            SCALE[7] * (x[7] - x[18 - 8]),
            SCALE[8] * (x[8] - x[18 - 9]),
        ];

        sdct_ii_9(&odd, &mut y[1..]);

        y[3] -= y[3 - 2];
        y[5] -= y[5 - 2];
        y[7] -= y[7 - 2];
        y[9] -= y[9 - 2];
        y[11] -= y[11 - 2];
        y[13] -= y[13 - 2];
        y[15] -= y[15 - 2];
        y[17] -= y[17 - 2];
    }

    /// Continutation of `imdct36`.
    ///
    /// Step 4: Computation of 9-point (N/4) SDCT-II.
    fn sdct_ii_9(x: &[f32; 9], y: &mut [f32]) {
        const D: [f32; 7] = [
            -1.732_050_807_568_877_2, // -sqrt(3.0)
            1.879_385_241_571_816_6,  // -2.0 * cos(8.0 * PI / 9.0)
            -0.347_296_355_333_860_8, // -2.0 * cos(4.0 * PI / 9.0)
            -1.532_088_886_237_956_0, // -2.0 * cos(2.0 * PI / 9.0)
            -0.684_040_286_651_337_8, // -2.0 * sin(8.0 * PI / 9.0)
            -1.969_615_506_024_416_0, // -2.0 * sin(4.0 * PI / 9.0)
            -1.285_575_219_373_078_5, // -2.0 * sin(2.0 * PI / 9.0)
        ];

        let a01 = x[3] + x[5];
        let a02 = x[3] - x[5];
        let a03 = x[6] + x[2];
        let a04 = x[6] - x[2];
        let a05 = x[1] + x[7];
        let a06 = x[1] - x[7];
        let a07 = x[8] + x[0];
        let a08 = x[8] - x[0];

        let a09 = x[4] + a05;
        let a10 = a01 + a03;
        let a11 = a10 + a07;
        let a12 = a03 - a07;
        let a13 = a01 - a07;
        let a14 = a01 - a03;
        let a15 = a02 - a04;
        let a16 = a15 + a08;
        let a17 = a04 + a08;
        let a18 = a02 - a08;
        let a19 = a02 + a04;
        let a20 = 2.0 * x[4] - a05;

        let m1 = D[0] * a06;
        let m2 = D[1] * a12;
        let m3 = D[2] * a13;
        let m4 = D[3] * a14;
        let m5 = D[0] * a16;
        let m6 = D[4] * a17;
        let m7 = D[5] * a18; // Note: the cited paper has an error, a1 should be a18.
        let m8 = D[6] * a19;

        let a21 = a20 + m2;
        let a22 = a20 - m2;
        let a23 = a20 + m3;
        let a24 = m1 + m6;
        let a25 = m1 - m6;
        let a26 = m1 + m7;

        y[0] = a09 + a11;
        y[2] = m8 - a26;
        y[4] = m4 - a21;
        y[6] = m5;
        y[8] = a22 - m3;
        y[10] = a25 - m7;
        y[12] = a11 - 2.0 * a09;
        y[14] = a24 + m8;
        y[16] = a23 + m4;
    }

    #[cfg(test)]
    mod tests {
        use super::imdct36;
        use std::f64;

        fn imdct36_analytical(x: &[f32; 18]) -> [f32; 36] {
            let mut result = [0f32; 36];

            const PI_72: f64 = f64::consts::PI / 72.0;

            for i in 0..36 {
                let mut sum = 0.0;
                for j in 0..18 {
                    sum +=
                        (x[j] as f64) * (PI_72 * (((2 * i) + 1 + 18) * ((2 * j) + 1)) as f64).cos();
                }
                result[i] = sum as f32;
            }
            result
        }

        #[test]
        fn verify_imdct36() {
            const TEST_VECTOR: [f32; 18] = [
                0.0976, 0.9321, 0.6138, 0.0857, 0.0433, 0.4855, 0.2144, 0.8488, //
                0.6889, 0.2983, 0.1957, 0.7037, 0.0052, 0.0197, 0.3188, 0.5123, //
                0.2994, 0.7157,
            ];

            const WINDOW: [f32; 36] = [1.0; 36];

            let mut actual = TEST_VECTOR;
            let mut overlap = [0.0; 18];
            imdct36(&mut actual, &WINDOW, &mut overlap);

            let expected = imdct36_analytical(&TEST_VECTOR);

            for i in 0..18 {
                assert!((expected[i] - actual[i]).abs() < 0.00001);
                assert!((expected[i + 18] - overlap[i]).abs() < 0.00001);
            }
        }
    }
}