bindgen/ir/analysis/has_vtable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
//! Determining which types has vtable
use super::{generate_dependencies, ConstrainResult, MonotoneFramework};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::traversal::EdgeKind;
use crate::ir::ty::TypeKind;
use crate::{Entry, HashMap};
use std::cmp;
use std::ops;
/// The result of the `HasVtableAnalysis` for an individual item.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum HasVtableResult {
/// The item does not have a vtable pointer.
No,
/// The item has a vtable and the actual vtable pointer is within this item.
SelfHasVtable,
/// The item has a vtable, but the actual vtable pointer is in a base
/// member.
BaseHasVtable,
}
impl Default for HasVtableResult {
fn default() -> Self {
HasVtableResult::No
}
}
impl HasVtableResult {
/// Take the least upper bound of `self` and `rhs`.
pub fn join(self, rhs: Self) -> Self {
cmp::max(self, rhs)
}
}
impl ops::BitOr for HasVtableResult {
type Output = Self;
fn bitor(self, rhs: HasVtableResult) -> Self::Output {
self.join(rhs)
}
}
impl ops::BitOrAssign for HasVtableResult {
fn bitor_assign(&mut self, rhs: HasVtableResult) {
*self = self.join(rhs)
}
}
/// An analysis that finds for each IR item whether it has vtable or not
///
/// We use the monotone function `has vtable`, defined as follows:
///
/// * If T is a type alias, a templated alias, an indirection to another type,
/// or a reference of a type, T has vtable if the type T refers to has vtable.
/// * If T is a compound type, T has vtable if we saw a virtual function when
/// parsing it or any of its base member has vtable.
/// * If T is an instantiation of an abstract template definition, T has
/// vtable if template definition has vtable
#[derive(Debug, Clone)]
pub struct HasVtableAnalysis<'ctx> {
ctx: &'ctx BindgenContext,
// The incremental result of this analysis's computation. Everything in this
// set definitely has a vtable.
have_vtable: HashMap<ItemId, HasVtableResult>,
// Dependencies saying that if a key ItemId has been inserted into the
// `have_vtable` set, then each of the ids in Vec<ItemId> need to be
// considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// has a vtable or not.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}
impl<'ctx> HasVtableAnalysis<'ctx> {
fn consider_edge(kind: EdgeKind) -> bool {
// These are the only edges that can affect whether a type has a
// vtable or not.
matches!(
kind,
EdgeKind::TypeReference |
EdgeKind::BaseMember |
EdgeKind::TemplateDeclaration
)
}
fn insert<Id: Into<ItemId>>(
&mut self,
id: Id,
result: HasVtableResult,
) -> ConstrainResult {
if let HasVtableResult::No = result {
return ConstrainResult::Same;
}
let id = id.into();
match self.have_vtable.entry(id) {
Entry::Occupied(mut entry) => {
if *entry.get() < result {
entry.insert(result);
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
Entry::Vacant(entry) => {
entry.insert(result);
ConstrainResult::Changed
}
}
}
fn forward<Id1, Id2>(&mut self, from: Id1, to: Id2) -> ConstrainResult
where
Id1: Into<ItemId>,
Id2: Into<ItemId>,
{
let from = from.into();
let to = to.into();
match self.have_vtable.get(&from).cloned() {
None => ConstrainResult::Same,
Some(r) => self.insert(to, r),
}
}
}
impl<'ctx> MonotoneFramework for HasVtableAnalysis<'ctx> {
type Node = ItemId;
type Extra = &'ctx BindgenContext;
type Output = HashMap<ItemId, HasVtableResult>;
fn new(ctx: &'ctx BindgenContext) -> HasVtableAnalysis<'ctx> {
let have_vtable = HashMap::default();
let dependencies = generate_dependencies(ctx, Self::consider_edge);
HasVtableAnalysis {
ctx,
have_vtable,
dependencies,
}
}
fn initial_worklist(&self) -> Vec<ItemId> {
self.ctx.allowlisted_items().iter().cloned().collect()
}
fn constrain(&mut self, id: ItemId) -> ConstrainResult {
trace!("constrain {:?}", id);
let item = self.ctx.resolve_item(id);
let ty = match item.as_type() {
None => return ConstrainResult::Same,
Some(ty) => ty,
};
// TODO #851: figure out a way to handle deriving from template type parameters.
match *ty.kind() {
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) |
TypeKind::ResolvedTypeRef(t) |
TypeKind::Reference(t) => {
trace!(
" aliases and references forward to their inner type"
);
self.forward(t, id)
}
TypeKind::Comp(ref info) => {
trace!(" comp considers its own methods and bases");
let mut result = HasVtableResult::No;
if info.has_own_virtual_method() {
trace!(" comp has its own virtual method");
result |= HasVtableResult::SelfHasVtable;
}
let bases_has_vtable = info.base_members().iter().any(|base| {
trace!(" comp has a base with a vtable: {:?}", base);
self.have_vtable.contains_key(&base.ty.into())
});
if bases_has_vtable {
result |= HasVtableResult::BaseHasVtable;
}
self.insert(id, result)
}
TypeKind::TemplateInstantiation(ref inst) => {
self.forward(inst.template_definition(), id)
}
_ => ConstrainResult::Same,
}
}
fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where
F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}
impl<'ctx> From<HasVtableAnalysis<'ctx>> for HashMap<ItemId, HasVtableResult> {
fn from(analysis: HasVtableAnalysis<'ctx>) -> Self {
// We let the lack of an entry mean "No" to save space.
extra_assert!(analysis
.have_vtable
.values()
.all(|v| { *v != HasVtableResult::No }));
analysis.have_vtable
}
}
/// A convenience trait for the things for which we might wonder if they have a
/// vtable during codegen.
///
/// This is not for _computing_ whether the thing has a vtable, it is for
/// looking up the results of the HasVtableAnalysis's computations for a
/// specific thing.
pub trait HasVtable {
/// Return `true` if this thing has vtable, `false` otherwise.
fn has_vtable(&self, ctx: &BindgenContext) -> bool;
/// Return `true` if this thing has an actual vtable pointer in itself, as
/// opposed to transitively in a base member.
fn has_vtable_ptr(&self, ctx: &BindgenContext) -> bool;
}