1#[cfg(feature = "arbitrary")]
2use quickcheck::{Arbitrary, Gen};
3#[cfg(feature = "rand-no-std")]
4use rand::{
5 distributions::{Distribution, Standard},
6 Rng,
7};
8
9#[cfg(feature = "serde-serialize-no-std")]
10use serde::{Deserialize, Deserializer, Serialize, Serializer};
11use std::fmt;
12
13use simba::scalar::RealField;
14
15use crate::base::dimension::U3;
16use crate::base::storage::Storage;
17use crate::base::{Matrix4, Vector, Vector3};
18
19use crate::geometry::{Point3, Projective3};
20
21#[repr(C)]
23#[cfg_attr(
24 all(not(target_os = "cuda"), feature = "cuda"),
25 derive(cust::DeviceCopy)
26)]
27#[derive(Copy, Clone)]
28pub struct Perspective3<T> {
29 matrix: Matrix4<T>,
30}
31
32impl<T: RealField> fmt::Debug for Perspective3<T> {
33 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
34 self.matrix.fmt(f)
35 }
36}
37
38impl<T: RealField> PartialEq for Perspective3<T> {
39 #[inline]
40 fn eq(&self, right: &Self) -> bool {
41 self.matrix == right.matrix
42 }
43}
44
45#[cfg(feature = "bytemuck")]
46unsafe impl<T> bytemuck::Zeroable for Perspective3<T>
47where
48 T: RealField + bytemuck::Zeroable,
49 Matrix4<T>: bytemuck::Zeroable,
50{
51}
52
53#[cfg(feature = "bytemuck")]
54unsafe impl<T> bytemuck::Pod for Perspective3<T>
55where
56 T: RealField + bytemuck::Pod,
57 Matrix4<T>: bytemuck::Pod,
58{
59}
60
61#[cfg(feature = "serde-serialize-no-std")]
62impl<T: RealField + Serialize> Serialize for Perspective3<T> {
63 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
64 where
65 S: Serializer,
66 {
67 self.matrix.serialize(serializer)
68 }
69}
70
71#[cfg(feature = "serde-serialize-no-std")]
72impl<'a, T: RealField + Deserialize<'a>> Deserialize<'a> for Perspective3<T> {
73 fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
74 where
75 Des: Deserializer<'a>,
76 {
77 let matrix = Matrix4::<T>::deserialize(deserializer)?;
78
79 Ok(Self::from_matrix_unchecked(matrix))
80 }
81}
82
83impl<T> Perspective3<T> {
84 #[inline]
89 pub const fn from_matrix_unchecked(matrix: Matrix4<T>) -> Self {
90 Self { matrix }
91 }
92}
93
94impl<T: RealField> Perspective3<T> {
95 pub fn new(aspect: T, fovy: T, znear: T, zfar: T) -> Self {
97 assert!(
98 relative_ne!(zfar, znear),
99 "The near-plane and far-plane must not be superimposed."
100 );
101 assert!(
102 !relative_eq!(aspect, T::zero()),
103 "The aspect ratio must not be zero."
104 );
105
106 let matrix = Matrix4::identity();
107 let mut res = Self::from_matrix_unchecked(matrix);
108
109 res.set_fovy(fovy);
110 res.set_aspect(aspect);
111 res.set_znear_and_zfar(znear, zfar);
112
113 res.matrix[(3, 3)] = T::zero();
114 res.matrix[(3, 2)] = -T::one();
115
116 res
117 }
118
119 #[inline]
121 #[must_use]
122 pub fn inverse(&self) -> Matrix4<T> {
123 let mut res = self.clone().to_homogeneous();
124
125 res[(0, 0)] = T::one() / self.matrix[(0, 0)].clone();
126 res[(1, 1)] = T::one() / self.matrix[(1, 1)].clone();
127 res[(2, 2)] = T::zero();
128
129 let m23 = self.matrix[(2, 3)].clone();
130 let m32 = self.matrix[(3, 2)].clone();
131
132 res[(2, 3)] = T::one() / m32.clone();
133 res[(3, 2)] = T::one() / m23.clone();
134 res[(3, 3)] = -self.matrix[(2, 2)].clone() / (m23 * m32);
135
136 res
137 }
138
139 #[inline]
141 #[must_use]
142 pub fn to_homogeneous(self) -> Matrix4<T> {
143 self.matrix.clone_owned()
144 }
145
146 #[inline]
148 #[must_use]
149 pub fn as_matrix(&self) -> &Matrix4<T> {
150 &self.matrix
151 }
152
153 #[inline]
155 #[must_use]
156 pub fn as_projective(&self) -> &Projective3<T> {
157 unsafe { &*(self as *const Perspective3<T> as *const Projective3<T>) }
158 }
159
160 #[inline]
162 #[must_use]
163 pub fn to_projective(self) -> Projective3<T> {
164 Projective3::from_matrix_unchecked(self.matrix)
165 }
166
167 #[inline]
169 pub fn into_inner(self) -> Matrix4<T> {
170 self.matrix
171 }
172
173 #[deprecated(note = "use `.into_inner()` instead")]
176 #[inline]
177 pub fn unwrap(self) -> Matrix4<T> {
178 self.matrix
179 }
180
181 #[inline]
183 #[must_use]
184 pub fn aspect(&self) -> T {
185 self.matrix[(1, 1)].clone() / self.matrix[(0, 0)].clone()
186 }
187
188 #[inline]
190 #[must_use]
191 pub fn fovy(&self) -> T {
192 (T::one() / self.matrix[(1, 1)].clone()).atan() * crate::convert(2.0)
193 }
194
195 #[inline]
197 #[must_use]
198 pub fn znear(&self) -> T {
199 let ratio =
200 (-self.matrix[(2, 2)].clone() + T::one()) / (-self.matrix[(2, 2)].clone() - T::one());
201
202 self.matrix[(2, 3)].clone() / (ratio * crate::convert(2.0))
203 - self.matrix[(2, 3)].clone() / crate::convert(2.0)
204 }
205
206 #[inline]
208 #[must_use]
209 pub fn zfar(&self) -> T {
210 let ratio =
211 (-self.matrix[(2, 2)].clone() + T::one()) / (-self.matrix[(2, 2)].clone() - T::one());
212
213 (self.matrix[(2, 3)].clone() - ratio * self.matrix[(2, 3)].clone()) / crate::convert(2.0)
214 }
215
216 #[inline]
221 #[must_use]
222 pub fn project_point(&self, p: &Point3<T>) -> Point3<T> {
223 let inverse_denom = -T::one() / p[2].clone();
224 Point3::new(
225 self.matrix[(0, 0)].clone() * p[0].clone() * inverse_denom.clone(),
226 self.matrix[(1, 1)].clone() * p[1].clone() * inverse_denom.clone(),
227 (self.matrix[(2, 2)].clone() * p[2].clone() + self.matrix[(2, 3)].clone())
228 * inverse_denom,
229 )
230 }
231
232 #[inline]
234 #[must_use]
235 pub fn unproject_point(&self, p: &Point3<T>) -> Point3<T> {
236 let inverse_denom =
237 self.matrix[(2, 3)].clone() / (p[2].clone() + self.matrix[(2, 2)].clone());
238
239 Point3::new(
240 p[0].clone() * inverse_denom.clone() / self.matrix[(0, 0)].clone(),
241 p[1].clone() * inverse_denom.clone() / self.matrix[(1, 1)].clone(),
242 -inverse_denom,
243 )
244 }
245
246 #[inline]
249 #[must_use]
250 pub fn project_vector<SB>(&self, p: &Vector<T, U3, SB>) -> Vector3<T>
251 where
252 SB: Storage<T, U3>,
253 {
254 let inverse_denom = -T::one() / p[2].clone();
255 Vector3::new(
256 self.matrix[(0, 0)].clone() * p[0].clone() * inverse_denom.clone(),
257 self.matrix[(1, 1)].clone() * p[1].clone() * inverse_denom,
258 self.matrix[(2, 2)].clone(),
259 )
260 }
261
262 #[inline]
265 pub fn set_aspect(&mut self, aspect: T) {
266 assert!(
267 !relative_eq!(aspect, T::zero()),
268 "The aspect ratio must not be zero."
269 );
270 self.matrix[(0, 0)] = self.matrix[(1, 1)].clone() / aspect;
271 }
272
273 #[inline]
275 pub fn set_fovy(&mut self, fovy: T) {
276 let old_m22 = self.matrix[(1, 1)].clone();
277 let new_m22 = T::one() / (fovy / crate::convert(2.0)).tan();
278 self.matrix[(1, 1)] = new_m22.clone();
279 self.matrix[(0, 0)] *= new_m22 / old_m22;
280 }
281
282 #[inline]
284 pub fn set_znear(&mut self, znear: T) {
285 let zfar = self.zfar();
286 self.set_znear_and_zfar(znear, zfar);
287 }
288
289 #[inline]
291 pub fn set_zfar(&mut self, zfar: T) {
292 let znear = self.znear();
293 self.set_znear_and_zfar(znear, zfar);
294 }
295
296 #[inline]
298 pub fn set_znear_and_zfar(&mut self, znear: T, zfar: T) {
299 self.matrix[(2, 2)] = (zfar.clone() + znear.clone()) / (znear.clone() - zfar.clone());
300 self.matrix[(2, 3)] = zfar.clone() * znear.clone() * crate::convert(2.0) / (znear - zfar);
301 }
302}
303
304#[cfg(feature = "rand-no-std")]
305impl<T: RealField> Distribution<Perspective3<T>> for Standard
306where
307 Standard: Distribution<T>,
308{
309 fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Perspective3<T> {
311 use crate::base::helper;
312 let znear = r.gen();
313 let zfar = helper::reject_rand(r, |x: &T| !(x.clone() - znear.clone()).is_zero());
314 let aspect = helper::reject_rand(r, |x: &T| !x.is_zero());
315
316 Perspective3::new(aspect, r.gen(), znear, zfar)
317 }
318}
319
320#[cfg(feature = "arbitrary")]
321impl<T: RealField + Arbitrary> Arbitrary for Perspective3<T> {
322 fn arbitrary(g: &mut Gen) -> Self {
323 use crate::base::helper;
324 let znear: T = Arbitrary::arbitrary(g);
325 let zfar = helper::reject(g, |x: &T| !(x.clone() - znear.clone()).is_zero());
326 let aspect = helper::reject(g, |x: &T| !x.is_zero());
327
328 Self::new(aspect, Arbitrary::arbitrary(g), znear, zfar)
329 }
330}
331
332impl<T: RealField> From<Perspective3<T>> for Matrix4<T> {
333 #[inline]
334 fn from(pers: Perspective3<T>) -> Self {
335 pers.into_inner()
336 }
337}