use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::Zero;
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar};
use crate::geometry::{AbstractRotation, Isometry, Point, Translation};
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(
all(not(target_os = "cuda"), feature = "cuda"),
derive(cust::DeviceCopy)
)]
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "T: Scalar + Serialize,
R: Serialize,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "T: Scalar + Deserialize<'de>,
R: Deserialize<'de>,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Deserialize<'de>"))
)]
pub struct Similarity<T, R, const D: usize> {
pub isometry: Isometry<T, R, D>,
scaling: T,
}
#[cfg(feature = "abomonation-serialize")]
impl<T: Scalar, R, const D: usize> Abomonation for Similarity<T, R, D>
where
Isometry<T, R, D>: Abomonation,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.isometry.entomb(writer)
}
fn extent(&self) -> usize {
self.isometry.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.isometry.exhume(bytes)
}
}
impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Similarity<T, R, D>
where
Owned<T, Const<D>>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.isometry.hash(state);
self.scaling.hash(state);
}
}
impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D>
where
R: AbstractRotation<T, D>,
{
#[inline]
pub fn from_parts(translation: Translation<T, D>, rotation: R, scaling: T) -> Self {
Self::from_isometry(Isometry::from_parts(translation, rotation), scaling)
}
#[inline]
pub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self {
assert!(!scaling.is_zero(), "The scaling factor must not be zero.");
Self { isometry, scaling }
}
#[inline]
pub fn set_scaling(&mut self, scaling: T) {
assert!(
!scaling.is_zero(),
"The similarity scaling factor must not be zero."
);
self.scaling = scaling;
}
}
impl<T: Scalar, R, const D: usize> Similarity<T, R, D> {
#[inline]
#[must_use]
pub fn scaling(&self) -> T {
self.scaling.clone()
}
}
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
{
#[inline]
pub fn from_scaling(scaling: T) -> Self {
Self::from_isometry(Isometry::identity(), scaling)
}
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
let mut res = self.clone();
res.inverse_mut();
res
}
#[inline]
pub fn inverse_mut(&mut self) {
self.scaling = T::one() / self.scaling.clone();
self.isometry.inverse_mut();
self.isometry.translation.vector *= self.scaling.clone();
}
#[inline]
#[must_use = "Did you mean to use prepend_scaling_mut()?"]
pub fn prepend_scaling(&self, scaling: T) -> Self {
assert!(
!scaling.is_zero(),
"The similarity scaling factor must not be zero."
);
Self::from_isometry(self.isometry.clone(), self.scaling.clone() * scaling)
}
#[inline]
#[must_use = "Did you mean to use append_scaling_mut()?"]
pub fn append_scaling(&self, scaling: T) -> Self {
assert!(
!scaling.is_zero(),
"The similarity scaling factor must not be zero."
);
Self::from_parts(
Translation::from(&self.isometry.translation.vector * scaling.clone()),
self.isometry.rotation.clone(),
self.scaling.clone() * scaling,
)
}
#[inline]
pub fn prepend_scaling_mut(&mut self, scaling: T) {
assert!(
!scaling.is_zero(),
"The similarity scaling factor must not be zero."
);
self.scaling *= scaling
}
#[inline]
pub fn append_scaling_mut(&mut self, scaling: T) {
assert!(
!scaling.is_zero(),
"The similarity scaling factor must not be zero."
);
self.isometry.translation.vector *= scaling.clone();
self.scaling *= scaling;
}
#[inline]
pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
self.isometry.append_translation_mut(t)
}
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.isometry.append_rotation_mut(r)
}
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
self.isometry.append_rotation_wrt_point_mut(r, p)
}
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.isometry.append_rotation_wrt_center_mut(r)
}
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self * pt
}
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self * v
}
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self.isometry.inverse_transform_point(pt) / self.scaling()
}
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self.isometry.inverse_transform_vector(v) / self.scaling()
}
}
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> {
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
let mut res = self.isometry.to_homogeneous();
for e in res.fixed_slice_mut::<D, D>(0, 0).iter_mut() {
*e *= self.scaling.clone()
}
res
}
}
impl<T: SimdRealField, R, const D: usize> Eq for Similarity<T, R, D> where
R: AbstractRotation<T, D> + Eq
{
}
impl<T: SimdRealField, R, const D: usize> PartialEq for Similarity<T, R, D>
where
R: AbstractRotation<T, D> + PartialEq,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.isometry == right.isometry && self.scaling == right.scaling
}
}
impl<T: RealField, R, const D: usize> AbsDiffEq for Similarity<T, R, D>
where
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.isometry.abs_diff_eq(&other.isometry, epsilon.clone())
&& self.scaling.abs_diff_eq(&other.scaling, epsilon)
}
}
impl<T: RealField, R, const D: usize> RelativeEq for Similarity<T, R, D>
where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.isometry
.relative_eq(&other.isometry, epsilon.clone(), max_relative.clone())
&& self
.scaling
.relative_eq(&other.scaling, epsilon, max_relative)
}
}
impl<T: RealField, R, const D: usize> UlpsEq for Similarity<T, R, D>
where
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.isometry
.ulps_eq(&other.isometry, epsilon.clone(), max_ulps)
&& self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
}
}
impl<T, R, const D: usize> fmt::Display for Similarity<T, R, D>
where
T: RealField + fmt::Display,
R: AbstractRotation<T, D> + fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Similarity {{")?;
write!(f, "{:.*}", precision, self.isometry)?;
write!(f, "Scaling: {:.*}", precision, self.scaling)?;
writeln!(f, "}}")
}
}