ncollide3d/pipeline/narrow_phase/contact_generator/
trimesh_trimesh_manifold_generator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
use crate::math::{Isometry, Vector};
use crate::pipeline::narrow_phase::{ContactDispatcher, ContactManifoldGenerator};
use crate::query::{
    self, visitors::AABBSetsInterferencesCollector, Contact, ContactKinematic, ContactManifold,
    ContactPrediction, ContactPreprocessor, ContactTrackingMode, NeighborhoodGeometry,
};
use crate::shape::{
    ClippingCache, CompositeShape, ConvexPolygonalFeature, FeatureId, Segment,
    SegmentPointLocation, Shape, TriMesh, Triangle,
};
use na::{self, RealField, Unit};
use std::mem;

/// Collision detector between a concave shape and another shape.
pub struct TriMeshTriMeshManifoldGenerator<N: RealField + Copy> {
    clip_cache: ClippingCache<N>,
    new_contacts: Vec<(Contact<N>, FeatureId, FeatureId)>,
    convex_feature1: ConvexPolygonalFeature<N>,
    convex_feature2: ConvexPolygonalFeature<N>,
    interferences: Vec<(usize, usize)>,
}

impl<N: RealField + Copy> TriMeshTriMeshManifoldGenerator<N> {
    /// Creates a new collision detector between a concave shape and another shape.
    pub fn new() -> TriMeshTriMeshManifoldGenerator<N> {
        TriMeshTriMeshManifoldGenerator {
            clip_cache: ClippingCache::new(),
            new_contacts: Vec::new(),
            convex_feature1: ConvexPolygonalFeature::with_size(3),
            convex_feature2: ConvexPolygonalFeature::with_size(3),
            interferences: Vec::new(),
        }
    }
}

impl<N: RealField + Copy> TriMeshTriMeshManifoldGenerator<N> {
    fn compute_faces_closest_points(
        &mut self,
        m12: &Isometry<N>,
        m21: &Isometry<N>,
        m1: &Isometry<N>,
        mesh1: &TriMesh<N>,
        i1: usize,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        mesh2: &TriMesh<N>,
        i2: usize,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
    ) {
        let face1 = &mesh1.faces()[i1];
        let face2 = &mesh2.faces()[i2];

        let pts1 = mesh1.points();
        let pts2 = mesh2.points();
        let t1 = Triangle::new(
            pts1[face1.indices.x],
            pts1[face1.indices.y],
            pts1[face1.indices.z],
        );
        let t2 = Triangle::new(
            m12 * pts2[face2.indices.x],
            m12 * pts2[face2.indices.y],
            m12 * pts2[face2.indices.z],
        );

        if let (Some(n1), Some(n2)) = (face1.normal, face2.normal) {
            let n2 = m12 * n2;

            /*
             * Start with the SAT.
             */
            #[inline(always)]
            fn penetration<N: RealField + Copy>(a: (N, N), b: (N, N)) -> Option<(N, bool)> {
                assert!(a.0 <= a.1 && b.0 <= b.1);
                if a.0 > b.1 || b.0 > a.1 {
                    // The intervals are disjoint.
                    None
                } else {
                    let depth1 = b.1 - a.0;
                    let depth2 = a.1 - b.0;

                    if depth1 < depth2 {
                        Some((depth1, true))
                    } else {
                        Some((depth2, false))
                    }
                }
            }

            #[inline(always)]
            fn sort2<N: RealField + Copy>(a: N, b: N) -> (N, N) {
                if a > b {
                    (b, a)
                } else {
                    (a, b)
                }
            }

            // This loop is a trick to be able to easily stop the search for a separating axis as
            // as we find one using `break 'search` (without having to do all this on a separate function
            // and do a return instead of breaks).
            'search: loop {
                let _big: N = na::convert(10000000.0);
                let mut penetration_depth = (N::max_value().unwrap(), false);
                let mut penetration_dir = Vector::y_axis();

                // First, test normals.
                let proj1 = t1.a.coords.dot(&n1);
                let mut interval1 = (proj1, proj1);
                let interval2 = t2.extents_on_dir(&n1);

                if mesh1.oriented() {
                    interval1.0 = -_big;
                }

                if let Some(overlap) = penetration(interval1, interval2) {
                    if overlap.0 < penetration_depth.0 {
                        penetration_depth = overlap;
                        penetration_dir = n1;
                    }
                } else {
                    // The triangles are disjoint.
                    break;
                }

                let proj2 = t2.a.coords.dot(&n2);
                let mut interval2 = (proj2, proj2);
                let interval1 = t1.extents_on_dir(&n2);

                if mesh2.oriented() {
                    interval2.0 = -_big;
                }

                if let Some(overlap) = penetration(interval1, interval2) {
                    if overlap.0 < penetration_depth.0 {
                        penetration_depth = overlap;
                        penetration_dir = n2;
                    }
                } else {
                    // The triangles are disjoint.
                    break;
                }

                let edge_dirs_a = t1.edges_scaled_directions();
                let edge_dirs_b = t2.edges_scaled_directions();

                // Second, test edges cross products.
                for (i, e1) in edge_dirs_a.iter().enumerate() {
                    for (j, e2) in edge_dirs_b.iter().enumerate() {
                        if let Some(dir) = Unit::try_new(e1.cross(e2), N::default_epsilon()) {
                            let mut interval1 = sort2(
                                dir.dot(&t1.vertices()[i].coords),
                                dir.dot(&t1.vertices()[(i + 2) % 3].coords),
                            );
                            let mut interval2 = sort2(
                                dir.dot(&t2.vertices()[j].coords),
                                dir.dot(&t2.vertices()[(j + 2) % 3].coords),
                            );

                            let eid1 = face1.edges[i];
                            let eid2 = face2.edges[j];

                            if mesh1.oriented() {
                                if mesh1.edge_tangent_cone_contains_dir(eid1, None, &dir) {
                                    interval1.0 = -_big;
                                } else if mesh1.edge_tangent_cone_contains_dir(eid1, None, &-dir) {
                                    interval1.1 = _big;
                                }
                            }

                            if mesh2.oriented() {
                                if mesh2.edge_tangent_cone_contains_dir(eid2, None, &(m21 * dir)) {
                                    interval2.0 = -_big;
                                } else if mesh2.edge_tangent_cone_contains_dir(
                                    eid2,
                                    None,
                                    &-(m21 * dir),
                                ) {
                                    interval2.1 = _big;
                                }
                            }

                            if let Some(overlap) = penetration(interval1, interval2) {
                                if overlap.0 < penetration_depth.0 {
                                    penetration_depth = overlap;
                                    penetration_dir = dir;
                                }
                            } else {
                                // Triangles are disjoint.
                                break 'search;
                            }
                        }
                    }
                }

                // If we reached this point, no separating axis was found: the triangles intersect.
                if let (Some(side_normals1), Some(side_normals2)) =
                    (face1.side_normals.as_ref(), face2.side_normals.as_ref())
                {
                    for i in 0..3 {
                        self.convex_feature1.vertices[i] = m1 * t1.vertices()[i];
                        self.convex_feature1.edge_normals[i] = m1 * *side_normals1[i];
                        self.convex_feature1.vertices_id[i] = FeatureId::Vertex(face1.indices[i]);
                        self.convex_feature1.edges_id[i] = FeatureId::Edge(face1.edges[i]);

                        self.convex_feature2.vertices[i] = m1 * t2.vertices()[i]; // m1 because t1 is in the local-space of the first geometry.
                        self.convex_feature2.edge_normals[i] = m2 * *side_normals2[i];
                        self.convex_feature2.vertices_id[i] = FeatureId::Vertex(face2.indices[i]);
                        self.convex_feature2.edges_id[i] = FeatureId::Edge(face2.edges[i]);
                    }

                    let normal = if !penetration_depth.1 {
                        m1 * penetration_dir
                    } else {
                        m1 * -penetration_dir
                    };

                    self.convex_feature1.normal = face1.normal.map(|n| m1 * n);
                    self.convex_feature1.feature_id = FeatureId::Face(i1);

                    // XXX: do we have to swap the vertices and edge normals too?
                    if let Some(normal_f1) = self.convex_feature1.normal.as_mut() {
                        if normal_f1.dot(&normal) < N::zero() {
                            *normal_f1 = -*normal_f1;
                            self.convex_feature1.feature_id =
                                FeatureId::Face(i1 + mesh1.faces().len());
                            self.convex_feature1.vertices.swap(0, 1);
                            self.convex_feature1.edge_normals.swap(1, 2);
                            self.convex_feature1.vertices_id.swap(0, 1);
                            self.convex_feature1.edges_id.swap(1, 2);
                        }
                    }

                    self.convex_feature2.normal = face2.normal.map(|n| m2 * n);
                    self.convex_feature2.feature_id = FeatureId::Face(i2);

                    if let Some(normal_f2) = self.convex_feature2.normal.as_mut() {
                        if -normal_f2.dot(&normal) < N::zero() {
                            *normal_f2 = -*normal_f2;
                            self.convex_feature2.feature_id =
                                FeatureId::Face(i2 + mesh2.faces().len());
                            self.convex_feature2.vertices.swap(0, 1);
                            self.convex_feature2.edge_normals.swap(1, 2);
                            self.convex_feature2.vertices_id.swap(0, 1);
                            self.convex_feature2.edges_id.swap(1, 2);
                        }
                    }

                    self.convex_feature1.clip(
                        &self.convex_feature2,
                        &normal,
                        prediction,
                        &mut self.clip_cache,
                        &mut self.new_contacts,
                    );

                    for (c, f1, f2) in self.new_contacts.drain(..) {
                        self.convex_feature1.add_contact_to_manifold(
                            &self.convex_feature2,
                            c,
                            m1,
                            f1,
                            None,
                            m2,
                            f2,
                            None,
                            manifold,
                        );
                    }
                }

                return;
            }

            /*
             * The two triangles don't intersect.
             * Compute all the LMDs considering the given linear and angular tolerances.
             */
            for i in 0..3 {
                let id_e1 = face1.edges[i];
                let e1 = &mesh1.edges()[id_e1];
                let seg1 = Segment::new(pts1[e1.indices.x], pts1[e1.indices.y]);

                for j in 0..3 {
                    let id_e2 = face2.edges[j];
                    let e2 = &mesh2.edges()[id_e2];
                    // FIXME: don't transform the points at each loop.
                    // Use the corresponding edge from t2 instead.
                    let seg2 = Segment::new(m12 * pts2[e2.indices.x], m12 * pts2[e2.indices.y]);

                    let locs = query::closest_points_segment_segment_with_locations_nD(
                        (&seg1.a, &seg1.b),
                        (&seg2.a, &seg2.b),
                    );
                    let p1 = seg1.point_at(&locs.0);
                    let p2 = seg2.point_at(&locs.1);
                    if let Some(dir) = Unit::try_new(p2 - p1, N::default_epsilon()) {
                        match locs {
                            (
                                SegmentPointLocation::OnVertex(i),
                                SegmentPointLocation::OnVertex(j),
                            ) => {
                                let ip1 = e1.indices[i];
                                let ip2 = e2.indices[j];
                                if mesh1.vertex_tangent_cone_polar_contains_dir(
                                    ip1,
                                    &dir,
                                    prediction.sin_angular1(),
                                ) && mesh2.vertex_tangent_cone_polar_contains_dir(
                                    ip2,
                                    &(m21 * -dir),
                                    prediction.sin_angular2(),
                                ) {
                                    // Accept the contact.
                                    let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
                                    let mut kinematic = ContactKinematic::new();
                                    kinematic.set_approx1(
                                        FeatureId::Vertex(ip1),
                                        pts1[ip1],
                                        NeighborhoodGeometry::Point,
                                    );
                                    kinematic.set_approx2(
                                        FeatureId::Vertex(ip2),
                                        pts2[ip2],
                                        NeighborhoodGeometry::Point,
                                    );
                                    let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
                                }
                            }
                            (
                                SegmentPointLocation::OnVertex(i),
                                SegmentPointLocation::OnEdge(_),
                            ) => {
                                let ip1 = e1.indices[i];
                                if mesh1.vertex_tangent_cone_polar_contains_dir(
                                    ip1,
                                    &dir,
                                    prediction.sin_angular1(),
                                ) && mesh2.edge_tangent_cone_polar_contains_orthogonal_dir(
                                    id_e2,
                                    &(m21 * -dir),
                                    prediction.sin_angular2(),
                                ) {
                                    // Accept the contact.
                                    let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
                                    let mut kinematic = ContactKinematic::new();
                                    kinematic.set_approx1(
                                        FeatureId::Vertex(ip1),
                                        pts1[ip1],
                                        NeighborhoodGeometry::Point,
                                    );
                                    kinematic.set_approx2(
                                        FeatureId::Edge(id_e2),
                                        pts2[e2.indices.x],
                                        NeighborhoodGeometry::Line(m21 * seg2.direction().unwrap()),
                                    );
                                    let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
                                }
                            }
                            (
                                SegmentPointLocation::OnEdge(_),
                                SegmentPointLocation::OnVertex(j),
                            ) => {
                                let ip2 = e2.indices[j];
                                if mesh1.edge_tangent_cone_polar_contains_orthogonal_dir(
                                    id_e1,
                                    &dir,
                                    prediction.sin_angular1(),
                                ) && mesh2.vertex_tangent_cone_polar_contains_dir(
                                    ip2,
                                    &(m21 * -dir),
                                    prediction.sin_angular2(),
                                ) {
                                    // Accept the contact.
                                    let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
                                    let mut kinematic = ContactKinematic::new();
                                    kinematic.set_approx1(
                                        FeatureId::Edge(id_e1),
                                        pts1[e1.indices.x],
                                        NeighborhoodGeometry::Line(seg1.direction().unwrap()),
                                    );
                                    kinematic.set_approx2(
                                        FeatureId::Vertex(ip2),
                                        pts2[ip2],
                                        NeighborhoodGeometry::Point,
                                    );

                                    let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
                                }
                            }
                            (SegmentPointLocation::OnEdge(_), SegmentPointLocation::OnEdge(_)) => {
                                if mesh1.edge_tangent_cone_polar_contains_orthogonal_dir(
                                    id_e1,
                                    &dir,
                                    prediction.sin_angular1(),
                                ) && mesh2.edge_tangent_cone_polar_contains_orthogonal_dir(
                                    id_e2,
                                    &(m21 * -dir),
                                    prediction.sin_angular2(),
                                ) {
                                    // Accept the contact.
                                    let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
                                    let mut kinematic = ContactKinematic::new();
                                    kinematic.set_approx1(
                                        FeatureId::Edge(id_e1),
                                        pts1[e1.indices.x],
                                        NeighborhoodGeometry::Line(seg1.direction().unwrap()),
                                    );
                                    kinematic.set_approx2(
                                        FeatureId::Edge(id_e2),
                                        pts2[e2.indices.x],
                                        NeighborhoodGeometry::Line(m21 * seg2.direction().unwrap()),
                                    );
                                    let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
                                }
                            }
                        }
                    }
                }
            }

            // Project vertices for face1 to the plane of face2.
            'vloop1: for iv in face1.indices.iter() {
                let p1 = pts1[*iv];

                for (side2, ref_pt2) in face2
                    .side_normals
                    .as_ref()
                    .unwrap()
                    .iter()
                    .zip(t2.vertices().iter())
                {
                    // FIXME: too bad we will re-transform side2 for each iv...
                    let dpt = p1 - ref_pt2;
                    if dpt.dot(&(m12 * side2)) >= N::zero() {
                        continue 'vloop1;
                    }
                }

                let dpt = p1 - t2.a;
                let dist = dpt.dot(&n2);

                if dist >= N::zero()
                    && mesh1.vertex_tangent_cone_polar_contains_dir(
                        *iv,
                        &-n2,
                        prediction.sin_angular1(),
                    )
                {
                    let proj = p1 + *n2 * -dist;

                    // Accept the contact.
                    let contact = Contact::new(m1 * p1, m1 * proj, m1 * -n2, -dist);
                    let mut kinematic = ContactKinematic::new();
                    kinematic.set_approx1(FeatureId::Vertex(*iv), p1, NeighborhoodGeometry::Point);
                    kinematic.set_approx2(
                        FeatureId::Face(i2),
                        pts2[face2.indices.x],
                        NeighborhoodGeometry::Plane(face2.normal.unwrap()),
                    );
                    let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
                }
            }

            // Project vertices for face2 to the plane of face1.
            'vloop2: for iv in face2.indices.iter() {
                // FIXME: don't re-transform the point.
                // Re-use the corresponding vertex from t2 instead.
                let p2 = m12 * pts2[*iv];

                for (side1, ref_pt1) in face1
                    .side_normals
                    .as_ref()
                    .unwrap()
                    .iter()
                    .zip(t1.vertices().iter())
                {
                    let dpt = p2 - ref_pt1;
                    if dpt.dot(side1) >= N::zero() {
                        continue 'vloop2;
                    }
                }

                let dpt = p2 - t1.a;
                let dist = dpt.dot(&n1);

                if dist >= N::zero()
                    && mesh2.vertex_tangent_cone_polar_contains_dir(
                        *iv,
                        &(m21 * -n1),
                        prediction.sin_angular2(),
                    )
                {
                    let proj = p2 + *n1 * -dist;

                    // Accept the contact.
                    let contact = Contact::new(m1 * proj, m1 * p2, m1 * n1, -dist);
                    let mut kinematic = ContactKinematic::new();
                    kinematic.set_approx1(
                        FeatureId::Face(i1),
                        t1.a,
                        NeighborhoodGeometry::Plane(n1),
                    );
                    kinematic.set_approx2(
                        FeatureId::Vertex(*iv),
                        m21 * p2,
                        NeighborhoodGeometry::Point,
                    );
                    let _ = manifold.push(contact, kinematic, proj, proc1, proc2);
                }
            }
        }
    }
}

impl<N: RealField + Copy> ContactManifoldGenerator<N> for TriMeshTriMeshManifoldGenerator<N> {
    fn generate_contacts(
        &mut self,
        _: &dyn ContactDispatcher<N>,
        m1: &Isometry<N>,
        g1: &dyn Shape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        g2: &dyn Shape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
    ) -> bool {
        if let (Some(mesh1), Some(mesh2)) =
            (g1.as_shape::<TriMesh<N>>(), g2.as_shape::<TriMesh<N>>())
        {
            // Find new collisions
            let m12 = m1.inverse() * m2;
            let m21 = m12.inverse();

            // For transforming AABBs from mesh2 in the local space of mesh1.
            let m12_abs_rot = m12.rotation.to_rotation_matrix().matrix().abs();

            {
                let mut visitor = AABBSetsInterferencesCollector::new(
                    prediction.linear(),
                    &m12,
                    &m12_abs_rot,
                    &mut self.interferences,
                );
                mesh1.bvh().visit_bvtt(mesh2.bvh(), &mut visitor);
            }

            let mut interferences = mem::replace(&mut self.interferences, Vec::new());
            for id in interferences.drain(..) {
                self.compute_faces_closest_points(
                    &m12, &m21, m1, mesh1, id.0, proc1, m2, mesh2, id.1, proc2, prediction,
                    manifold,
                );
            }
            self.interferences = interferences;

            true
        } else {
            false
        }
    }

    fn init_manifold(&self) -> ContactManifold<N> {
        let mut res = ContactManifold::new();
        res.set_tracking_mode(ContactTrackingMode::FeatureBased);
        res
    }
}