ncollide3d/pipeline/narrow_phase/contact_generator/trimesh_trimesh_manifold_generator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
use crate::math::{Isometry, Vector};
use crate::pipeline::narrow_phase::{ContactDispatcher, ContactManifoldGenerator};
use crate::query::{
self, visitors::AABBSetsInterferencesCollector, Contact, ContactKinematic, ContactManifold,
ContactPrediction, ContactPreprocessor, ContactTrackingMode, NeighborhoodGeometry,
};
use crate::shape::{
ClippingCache, CompositeShape, ConvexPolygonalFeature, FeatureId, Segment,
SegmentPointLocation, Shape, TriMesh, Triangle,
};
use na::{self, RealField, Unit};
use std::mem;
/// Collision detector between a concave shape and another shape.
pub struct TriMeshTriMeshManifoldGenerator<N: RealField + Copy> {
clip_cache: ClippingCache<N>,
new_contacts: Vec<(Contact<N>, FeatureId, FeatureId)>,
convex_feature1: ConvexPolygonalFeature<N>,
convex_feature2: ConvexPolygonalFeature<N>,
interferences: Vec<(usize, usize)>,
}
impl<N: RealField + Copy> TriMeshTriMeshManifoldGenerator<N> {
/// Creates a new collision detector between a concave shape and another shape.
pub fn new() -> TriMeshTriMeshManifoldGenerator<N> {
TriMeshTriMeshManifoldGenerator {
clip_cache: ClippingCache::new(),
new_contacts: Vec::new(),
convex_feature1: ConvexPolygonalFeature::with_size(3),
convex_feature2: ConvexPolygonalFeature::with_size(3),
interferences: Vec::new(),
}
}
}
impl<N: RealField + Copy> TriMeshTriMeshManifoldGenerator<N> {
fn compute_faces_closest_points(
&mut self,
m12: &Isometry<N>,
m21: &Isometry<N>,
m1: &Isometry<N>,
mesh1: &TriMesh<N>,
i1: usize,
proc1: Option<&dyn ContactPreprocessor<N>>,
m2: &Isometry<N>,
mesh2: &TriMesh<N>,
i2: usize,
proc2: Option<&dyn ContactPreprocessor<N>>,
prediction: &ContactPrediction<N>,
manifold: &mut ContactManifold<N>,
) {
let face1 = &mesh1.faces()[i1];
let face2 = &mesh2.faces()[i2];
let pts1 = mesh1.points();
let pts2 = mesh2.points();
let t1 = Triangle::new(
pts1[face1.indices.x],
pts1[face1.indices.y],
pts1[face1.indices.z],
);
let t2 = Triangle::new(
m12 * pts2[face2.indices.x],
m12 * pts2[face2.indices.y],
m12 * pts2[face2.indices.z],
);
if let (Some(n1), Some(n2)) = (face1.normal, face2.normal) {
let n2 = m12 * n2;
/*
* Start with the SAT.
*/
#[inline(always)]
fn penetration<N: RealField + Copy>(a: (N, N), b: (N, N)) -> Option<(N, bool)> {
assert!(a.0 <= a.1 && b.0 <= b.1);
if a.0 > b.1 || b.0 > a.1 {
// The intervals are disjoint.
None
} else {
let depth1 = b.1 - a.0;
let depth2 = a.1 - b.0;
if depth1 < depth2 {
Some((depth1, true))
} else {
Some((depth2, false))
}
}
}
#[inline(always)]
fn sort2<N: RealField + Copy>(a: N, b: N) -> (N, N) {
if a > b {
(b, a)
} else {
(a, b)
}
}
// This loop is a trick to be able to easily stop the search for a separating axis as
// as we find one using `break 'search` (without having to do all this on a separate function
// and do a return instead of breaks).
'search: loop {
let _big: N = na::convert(10000000.0);
let mut penetration_depth = (N::max_value().unwrap(), false);
let mut penetration_dir = Vector::y_axis();
// First, test normals.
let proj1 = t1.a.coords.dot(&n1);
let mut interval1 = (proj1, proj1);
let interval2 = t2.extents_on_dir(&n1);
if mesh1.oriented() {
interval1.0 = -_big;
}
if let Some(overlap) = penetration(interval1, interval2) {
if overlap.0 < penetration_depth.0 {
penetration_depth = overlap;
penetration_dir = n1;
}
} else {
// The triangles are disjoint.
break;
}
let proj2 = t2.a.coords.dot(&n2);
let mut interval2 = (proj2, proj2);
let interval1 = t1.extents_on_dir(&n2);
if mesh2.oriented() {
interval2.0 = -_big;
}
if let Some(overlap) = penetration(interval1, interval2) {
if overlap.0 < penetration_depth.0 {
penetration_depth = overlap;
penetration_dir = n2;
}
} else {
// The triangles are disjoint.
break;
}
let edge_dirs_a = t1.edges_scaled_directions();
let edge_dirs_b = t2.edges_scaled_directions();
// Second, test edges cross products.
for (i, e1) in edge_dirs_a.iter().enumerate() {
for (j, e2) in edge_dirs_b.iter().enumerate() {
if let Some(dir) = Unit::try_new(e1.cross(e2), N::default_epsilon()) {
let mut interval1 = sort2(
dir.dot(&t1.vertices()[i].coords),
dir.dot(&t1.vertices()[(i + 2) % 3].coords),
);
let mut interval2 = sort2(
dir.dot(&t2.vertices()[j].coords),
dir.dot(&t2.vertices()[(j + 2) % 3].coords),
);
let eid1 = face1.edges[i];
let eid2 = face2.edges[j];
if mesh1.oriented() {
if mesh1.edge_tangent_cone_contains_dir(eid1, None, &dir) {
interval1.0 = -_big;
} else if mesh1.edge_tangent_cone_contains_dir(eid1, None, &-dir) {
interval1.1 = _big;
}
}
if mesh2.oriented() {
if mesh2.edge_tangent_cone_contains_dir(eid2, None, &(m21 * dir)) {
interval2.0 = -_big;
} else if mesh2.edge_tangent_cone_contains_dir(
eid2,
None,
&-(m21 * dir),
) {
interval2.1 = _big;
}
}
if let Some(overlap) = penetration(interval1, interval2) {
if overlap.0 < penetration_depth.0 {
penetration_depth = overlap;
penetration_dir = dir;
}
} else {
// Triangles are disjoint.
break 'search;
}
}
}
}
// If we reached this point, no separating axis was found: the triangles intersect.
if let (Some(side_normals1), Some(side_normals2)) =
(face1.side_normals.as_ref(), face2.side_normals.as_ref())
{
for i in 0..3 {
self.convex_feature1.vertices[i] = m1 * t1.vertices()[i];
self.convex_feature1.edge_normals[i] = m1 * *side_normals1[i];
self.convex_feature1.vertices_id[i] = FeatureId::Vertex(face1.indices[i]);
self.convex_feature1.edges_id[i] = FeatureId::Edge(face1.edges[i]);
self.convex_feature2.vertices[i] = m1 * t2.vertices()[i]; // m1 because t1 is in the local-space of the first geometry.
self.convex_feature2.edge_normals[i] = m2 * *side_normals2[i];
self.convex_feature2.vertices_id[i] = FeatureId::Vertex(face2.indices[i]);
self.convex_feature2.edges_id[i] = FeatureId::Edge(face2.edges[i]);
}
let normal = if !penetration_depth.1 {
m1 * penetration_dir
} else {
m1 * -penetration_dir
};
self.convex_feature1.normal = face1.normal.map(|n| m1 * n);
self.convex_feature1.feature_id = FeatureId::Face(i1);
// XXX: do we have to swap the vertices and edge normals too?
if let Some(normal_f1) = self.convex_feature1.normal.as_mut() {
if normal_f1.dot(&normal) < N::zero() {
*normal_f1 = -*normal_f1;
self.convex_feature1.feature_id =
FeatureId::Face(i1 + mesh1.faces().len());
self.convex_feature1.vertices.swap(0, 1);
self.convex_feature1.edge_normals.swap(1, 2);
self.convex_feature1.vertices_id.swap(0, 1);
self.convex_feature1.edges_id.swap(1, 2);
}
}
self.convex_feature2.normal = face2.normal.map(|n| m2 * n);
self.convex_feature2.feature_id = FeatureId::Face(i2);
if let Some(normal_f2) = self.convex_feature2.normal.as_mut() {
if -normal_f2.dot(&normal) < N::zero() {
*normal_f2 = -*normal_f2;
self.convex_feature2.feature_id =
FeatureId::Face(i2 + mesh2.faces().len());
self.convex_feature2.vertices.swap(0, 1);
self.convex_feature2.edge_normals.swap(1, 2);
self.convex_feature2.vertices_id.swap(0, 1);
self.convex_feature2.edges_id.swap(1, 2);
}
}
self.convex_feature1.clip(
&self.convex_feature2,
&normal,
prediction,
&mut self.clip_cache,
&mut self.new_contacts,
);
for (c, f1, f2) in self.new_contacts.drain(..) {
self.convex_feature1.add_contact_to_manifold(
&self.convex_feature2,
c,
m1,
f1,
None,
m2,
f2,
None,
manifold,
);
}
}
return;
}
/*
* The two triangles don't intersect.
* Compute all the LMDs considering the given linear and angular tolerances.
*/
for i in 0..3 {
let id_e1 = face1.edges[i];
let e1 = &mesh1.edges()[id_e1];
let seg1 = Segment::new(pts1[e1.indices.x], pts1[e1.indices.y]);
for j in 0..3 {
let id_e2 = face2.edges[j];
let e2 = &mesh2.edges()[id_e2];
// FIXME: don't transform the points at each loop.
// Use the corresponding edge from t2 instead.
let seg2 = Segment::new(m12 * pts2[e2.indices.x], m12 * pts2[e2.indices.y]);
let locs = query::closest_points_segment_segment_with_locations_nD(
(&seg1.a, &seg1.b),
(&seg2.a, &seg2.b),
);
let p1 = seg1.point_at(&locs.0);
let p2 = seg2.point_at(&locs.1);
if let Some(dir) = Unit::try_new(p2 - p1, N::default_epsilon()) {
match locs {
(
SegmentPointLocation::OnVertex(i),
SegmentPointLocation::OnVertex(j),
) => {
let ip1 = e1.indices[i];
let ip2 = e2.indices[j];
if mesh1.vertex_tangent_cone_polar_contains_dir(
ip1,
&dir,
prediction.sin_angular1(),
) && mesh2.vertex_tangent_cone_polar_contains_dir(
ip2,
&(m21 * -dir),
prediction.sin_angular2(),
) {
// Accept the contact.
let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
let mut kinematic = ContactKinematic::new();
kinematic.set_approx1(
FeatureId::Vertex(ip1),
pts1[ip1],
NeighborhoodGeometry::Point,
);
kinematic.set_approx2(
FeatureId::Vertex(ip2),
pts2[ip2],
NeighborhoodGeometry::Point,
);
let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
}
}
(
SegmentPointLocation::OnVertex(i),
SegmentPointLocation::OnEdge(_),
) => {
let ip1 = e1.indices[i];
if mesh1.vertex_tangent_cone_polar_contains_dir(
ip1,
&dir,
prediction.sin_angular1(),
) && mesh2.edge_tangent_cone_polar_contains_orthogonal_dir(
id_e2,
&(m21 * -dir),
prediction.sin_angular2(),
) {
// Accept the contact.
let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
let mut kinematic = ContactKinematic::new();
kinematic.set_approx1(
FeatureId::Vertex(ip1),
pts1[ip1],
NeighborhoodGeometry::Point,
);
kinematic.set_approx2(
FeatureId::Edge(id_e2),
pts2[e2.indices.x],
NeighborhoodGeometry::Line(m21 * seg2.direction().unwrap()),
);
let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
}
}
(
SegmentPointLocation::OnEdge(_),
SegmentPointLocation::OnVertex(j),
) => {
let ip2 = e2.indices[j];
if mesh1.edge_tangent_cone_polar_contains_orthogonal_dir(
id_e1,
&dir,
prediction.sin_angular1(),
) && mesh2.vertex_tangent_cone_polar_contains_dir(
ip2,
&(m21 * -dir),
prediction.sin_angular2(),
) {
// Accept the contact.
let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
let mut kinematic = ContactKinematic::new();
kinematic.set_approx1(
FeatureId::Edge(id_e1),
pts1[e1.indices.x],
NeighborhoodGeometry::Line(seg1.direction().unwrap()),
);
kinematic.set_approx2(
FeatureId::Vertex(ip2),
pts2[ip2],
NeighborhoodGeometry::Point,
);
let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
}
}
(SegmentPointLocation::OnEdge(_), SegmentPointLocation::OnEdge(_)) => {
if mesh1.edge_tangent_cone_polar_contains_orthogonal_dir(
id_e1,
&dir,
prediction.sin_angular1(),
) && mesh2.edge_tangent_cone_polar_contains_orthogonal_dir(
id_e2,
&(m21 * -dir),
prediction.sin_angular2(),
) {
// Accept the contact.
let contact = Contact::new_wo_depth(m1 * p1, m1 * p2, m1 * dir);
let mut kinematic = ContactKinematic::new();
kinematic.set_approx1(
FeatureId::Edge(id_e1),
pts1[e1.indices.x],
NeighborhoodGeometry::Line(seg1.direction().unwrap()),
);
kinematic.set_approx2(
FeatureId::Edge(id_e2),
pts2[e2.indices.x],
NeighborhoodGeometry::Line(m21 * seg2.direction().unwrap()),
);
let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
}
}
}
}
}
}
// Project vertices for face1 to the plane of face2.
'vloop1: for iv in face1.indices.iter() {
let p1 = pts1[*iv];
for (side2, ref_pt2) in face2
.side_normals
.as_ref()
.unwrap()
.iter()
.zip(t2.vertices().iter())
{
// FIXME: too bad we will re-transform side2 for each iv...
let dpt = p1 - ref_pt2;
if dpt.dot(&(m12 * side2)) >= N::zero() {
continue 'vloop1;
}
}
let dpt = p1 - t2.a;
let dist = dpt.dot(&n2);
if dist >= N::zero()
&& mesh1.vertex_tangent_cone_polar_contains_dir(
*iv,
&-n2,
prediction.sin_angular1(),
)
{
let proj = p1 + *n2 * -dist;
// Accept the contact.
let contact = Contact::new(m1 * p1, m1 * proj, m1 * -n2, -dist);
let mut kinematic = ContactKinematic::new();
kinematic.set_approx1(FeatureId::Vertex(*iv), p1, NeighborhoodGeometry::Point);
kinematic.set_approx2(
FeatureId::Face(i2),
pts2[face2.indices.x],
NeighborhoodGeometry::Plane(face2.normal.unwrap()),
);
let _ = manifold.push(contact, kinematic, p1, proc1, proc2);
}
}
// Project vertices for face2 to the plane of face1.
'vloop2: for iv in face2.indices.iter() {
// FIXME: don't re-transform the point.
// Re-use the corresponding vertex from t2 instead.
let p2 = m12 * pts2[*iv];
for (side1, ref_pt1) in face1
.side_normals
.as_ref()
.unwrap()
.iter()
.zip(t1.vertices().iter())
{
let dpt = p2 - ref_pt1;
if dpt.dot(side1) >= N::zero() {
continue 'vloop2;
}
}
let dpt = p2 - t1.a;
let dist = dpt.dot(&n1);
if dist >= N::zero()
&& mesh2.vertex_tangent_cone_polar_contains_dir(
*iv,
&(m21 * -n1),
prediction.sin_angular2(),
)
{
let proj = p2 + *n1 * -dist;
// Accept the contact.
let contact = Contact::new(m1 * proj, m1 * p2, m1 * n1, -dist);
let mut kinematic = ContactKinematic::new();
kinematic.set_approx1(
FeatureId::Face(i1),
t1.a,
NeighborhoodGeometry::Plane(n1),
);
kinematic.set_approx2(
FeatureId::Vertex(*iv),
m21 * p2,
NeighborhoodGeometry::Point,
);
let _ = manifold.push(contact, kinematic, proj, proc1, proc2);
}
}
}
}
}
impl<N: RealField + Copy> ContactManifoldGenerator<N> for TriMeshTriMeshManifoldGenerator<N> {
fn generate_contacts(
&mut self,
_: &dyn ContactDispatcher<N>,
m1: &Isometry<N>,
g1: &dyn Shape<N>,
proc1: Option<&dyn ContactPreprocessor<N>>,
m2: &Isometry<N>,
g2: &dyn Shape<N>,
proc2: Option<&dyn ContactPreprocessor<N>>,
prediction: &ContactPrediction<N>,
manifold: &mut ContactManifold<N>,
) -> bool {
if let (Some(mesh1), Some(mesh2)) =
(g1.as_shape::<TriMesh<N>>(), g2.as_shape::<TriMesh<N>>())
{
// Find new collisions
let m12 = m1.inverse() * m2;
let m21 = m12.inverse();
// For transforming AABBs from mesh2 in the local space of mesh1.
let m12_abs_rot = m12.rotation.to_rotation_matrix().matrix().abs();
{
let mut visitor = AABBSetsInterferencesCollector::new(
prediction.linear(),
&m12,
&m12_abs_rot,
&mut self.interferences,
);
mesh1.bvh().visit_bvtt(mesh2.bvh(), &mut visitor);
}
let mut interferences = mem::replace(&mut self.interferences, Vec::new());
for id in interferences.drain(..) {
self.compute_faces_closest_points(
&m12, &m21, m1, mesh1, id.0, proc1, m2, mesh2, id.1, proc2, prediction,
manifold,
);
}
self.interferences = interferences;
true
} else {
false
}
}
fn init_manifold(&self) -> ContactManifold<N> {
let mut res = ContactManifold::new();
res.set_tracking_mode(ContactTrackingMode::FeatureBased);
res
}
}