nalgebra/base/
norm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;

use num::Zero;
use std::ops::Neg;

use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Dim, DimName, Matrix, Normed, OMatrix, OVector};
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::storage::{Storage, StorageMut};
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
use simba::scalar::ClosedNeg;
use simba::simd::{SimdOption, SimdPartialOrd, SimdValue};

// TODO: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<T: SimdComplexField> {
    /// Apply this norm to the given matrix.
    fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
    where
        R: Dim,
        C: Dim,
        S: Storage<T, R, C>;
    /// Use the metric induced by this norm to compute the metric distance between the two given matrices.
    fn metric_distance<R1, C1, S1, R2, C2, S2>(
        &self,
        m1: &Matrix<T, R1, C1, S1>,
        m2: &Matrix<T, R2, C2, S2>,
    ) -> T::SimdRealField
    where
        R1: Dim,
        C1: Dim,
        S1: Storage<T, R1, C1>,
        R2: Dim,
        C2: Dim,
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}

/// Euclidean norm.
#[derive(Copy, Clone, Debug)]
pub struct EuclideanNorm;
/// Lp norm.
#[derive(Copy, Clone, Debug)]
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
#[derive(Copy, Clone, Debug)]
pub struct UniformNorm;

impl<T: SimdComplexField> Norm<T> for EuclideanNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
    where
        R: Dim,
        C: Dim,
        S: Storage<T, R, C>,
    {
        m.norm_squared().simd_sqrt()
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(
        &self,
        m1: &Matrix<T, R1, C1, S1>,
        m2: &Matrix<T, R2, C2, S2>,
    ) -> T::SimdRealField
    where
        R1: Dim,
        C1: Dim,
        S1: Storage<T, R1, C1>,
        R2: Dim,
        C2: Dim,
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
    {
        m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| {
            let diff = a - b;
            acc + diff.simd_modulus_squared()
        })
        .simd_sqrt()
    }
}

impl<T: SimdComplexField> Norm<T> for LpNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
    where
        R: Dim,
        C: Dim,
        S: Storage<T, R, C>,
    {
        m.fold(T::SimdRealField::zero(), |a, b| {
            a + b.simd_modulus().simd_powi(self.0)
        })
        .simd_powf(crate::convert(1.0 / (self.0 as f64)))
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(
        &self,
        m1: &Matrix<T, R1, C1, S1>,
        m2: &Matrix<T, R2, C2, S2>,
    ) -> T::SimdRealField
    where
        R1: Dim,
        C1: Dim,
        S1: Storage<T, R1, C1>,
        R2: Dim,
        C2: Dim,
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
    {
        m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| {
            let diff = a - b;
            acc + diff.simd_modulus().simd_powi(self.0)
        })
        .simd_powf(crate::convert(1.0 / (self.0 as f64)))
    }
}

impl<T: SimdComplexField> Norm<T> for UniformNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
    where
        R: Dim,
        C: Dim,
        S: Storage<T, R, C>,
    {
        // NOTE: we don't use `m.amax()` here because for the complex
        // numbers this will return the max norm1 instead of the modulus.
        m.fold(T::SimdRealField::zero(), |acc, a| {
            acc.simd_max(a.simd_modulus())
        })
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(
        &self,
        m1: &Matrix<T, R1, C1, S1>,
        m2: &Matrix<T, R2, C2, S2>,
    ) -> T::SimdRealField
    where
        R1: Dim,
        C1: Dim,
        S1: Storage<T, R1, C1>,
        R2: Dim,
        C2: Dim,
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
    {
        m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| {
            let val = (a - b).simd_modulus();
            acc.simd_max(val)
        })
    }
}

/// # Magnitude and norms
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /// The squared L2 norm of this vector.
    #[inline]
    #[must_use]
    pub fn norm_squared(&self) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        let mut res = T::SimdRealField::zero();

        for i in 0..self.ncols() {
            let col = self.column(i);
            res += col.dotc(&col).simd_real()
        }

        res
    }

    /// The L2 norm of this matrix.
    ///
    /// Use `.apply_norm` to apply a custom norm.
    #[inline]
    #[must_use]
    pub fn norm(&self) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        self.norm_squared().simd_sqrt()
    }

    /// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
    ///
    /// Use `.apply_metric_distance` to apply a custom norm.
    #[inline]
    #[must_use]
    pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<T, R2, C2, S2>) -> T::SimdRealField
    where
        T: SimdComplexField,
        R2: Dim,
        C2: Dim,
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
    {
        self.apply_metric_distance(rhs, &EuclideanNorm)
    }

    /// Uses the given `norm` to compute the norm of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
    ///
    /// let v = Vector3::new(1.0, 2.0, 3.0);
    /// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
    /// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
    /// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
    /// ```
    #[inline]
    #[must_use]
    pub fn apply_norm(&self, norm: &impl Norm<T>) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        norm.norm(self)
    }

    /// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
    ///
    /// let v1 = Vector3::new(1.0, 2.0, 3.0);
    /// let v2 = Vector3::new(10.0, 20.0, 30.0);
    ///
    /// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
    /// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
    /// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
    /// ```
    #[inline]
    #[must_use]
    pub fn apply_metric_distance<R2, C2, S2>(
        &self,
        rhs: &Matrix<T, R2, C2, S2>,
        norm: &impl Norm<T>,
    ) -> T::SimdRealField
    where
        T: SimdComplexField,
        R2: Dim,
        C2: Dim,
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
    {
        norm.metric_distance(self, rhs)
    }

    /// A synonym for the norm of this matrix.
    ///
    /// Aka the length.
    ///
    /// This function is simply implemented as a call to `norm()`
    #[inline]
    #[must_use]
    pub fn magnitude(&self) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        self.norm()
    }

    /// A synonym for the squared norm of this matrix.
    ///
    /// Aka the squared length.
    ///
    /// This function is simply implemented as a call to `norm_squared()`
    #[inline]
    #[must_use]
    pub fn magnitude_squared(&self) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        self.norm_squared()
    }

    /// Sets the magnitude of this vector.
    #[inline]
    pub fn set_magnitude(&mut self, magnitude: T::SimdRealField)
    where
        T: SimdComplexField,
        S: StorageMut<T, R, C>,
    {
        let n = self.norm();
        self.scale_mut(magnitude / n)
    }

    /// Returns a normalized version of this matrix.
    #[inline]
    #[must_use = "Did you mean to use normalize_mut()?"]
    pub fn normalize(&self) -> OMatrix<T, R, C>
    where
        T: SimdComplexField,
        DefaultAllocator: Allocator<T, R, C>,
    {
        self.unscale(self.norm())
    }

    /// The Lp norm of this matrix.
    #[inline]
    #[must_use]
    pub fn lp_norm(&self, p: i32) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        self.apply_norm(&LpNorm(p))
    }

    /// Attempts to normalize `self`.
    ///
    /// The components of this matrix can be SIMD types.
    #[inline]
    #[must_use = "Did you mean to use simd_try_normalize_mut()?"]
    pub fn simd_try_normalize(&self, min_norm: T::SimdRealField) -> SimdOption<OMatrix<T, R, C>>
    where
        T: SimdComplexField,
        T::Element: Scalar,
        DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
    {
        let n = self.norm();
        let le = n.clone().simd_le(min_norm);
        let val = self.unscale(n);
        SimdOption::new(val, le)
    }

    /// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
    ///
    /// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
    /// Otherwise this is equivalent to: `*self = self.normalize() * magnitude.
    #[inline]
    pub fn try_set_magnitude(&mut self, magnitude: T::RealField, min_magnitude: T::RealField)
    where
        T: ComplexField,
        S: StorageMut<T, R, C>,
    {
        let n = self.norm();

        if n > min_magnitude {
            self.scale_mut(magnitude / n)
        }
    }

    /// Returns a new vector with the same magnitude as `self` clamped between `0.0` and `max`.
    #[inline]
    #[must_use]
    pub fn cap_magnitude(&self, max: T::RealField) -> OMatrix<T, R, C>
    where
        T: ComplexField,
        DefaultAllocator: Allocator<T, R, C>,
    {
        let n = self.norm();

        if n > max {
            self.scale(max / n)
        } else {
            self.clone_owned()
        }
    }

    /// Returns a new vector with the same magnitude as `self` clamped between `0.0` and `max`.
    #[inline]
    #[must_use]
    pub fn simd_cap_magnitude(&self, max: T::SimdRealField) -> OMatrix<T, R, C>
    where
        T: SimdComplexField,
        T::Element: Scalar,
        DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
    {
        let n = self.norm();
        let scaled = self.scale(max.clone() / n.clone());
        let use_scaled = n.simd_gt(max);
        scaled.select(use_scaled, self.clone_owned())
    }

    /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
    ///
    /// The components of this matrix cannot be SIMD types (see `simd_try_normalize`) instead.
    #[inline]
    #[must_use = "Did you mean to use try_normalize_mut()?"]
    pub fn try_normalize(&self, min_norm: T::RealField) -> Option<OMatrix<T, R, C>>
    where
        T: ComplexField,
        DefaultAllocator: Allocator<T, R, C>,
    {
        let n = self.norm();

        if n <= min_norm {
            None
        } else {
            Some(self.unscale(n))
        }
    }
}

/// # In-place normalization
impl<T: Scalar, R: Dim, C: Dim, S: StorageMut<T, R, C>> Matrix<T, R, C, S> {
    /// Normalizes this matrix in-place and returns its norm.
    ///
    /// The components of the matrix cannot be SIMD types (see `simd_try_normalize_mut` instead).
    #[inline]
    pub fn normalize_mut(&mut self) -> T::SimdRealField
    where
        T: SimdComplexField,
    {
        let n = self.norm();
        self.unscale_mut(n.clone());

        n
    }

    /// Normalizes this matrix in-place and return its norm.
    ///
    /// The components of the matrix can be SIMD types.
    #[inline]
    #[must_use = "Did you mean to use simd_try_normalize_mut()?"]
    pub fn simd_try_normalize_mut(
        &mut self,
        min_norm: T::SimdRealField,
    ) -> SimdOption<T::SimdRealField>
    where
        T: SimdComplexField,
        T::Element: Scalar,
        DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
    {
        let n = self.norm();
        let le = n.clone().simd_le(min_norm);
        self.apply(|e| *e = e.clone().simd_unscale(n.clone()).select(le, e.clone()));
        SimdOption::new(n, le)
    }

    /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
    ///
    /// If the normalization succeeded, returns the old norm of this matrix.
    #[inline]
    pub fn try_normalize_mut(&mut self, min_norm: T::RealField) -> Option<T::RealField>
    where
        T: ComplexField,
    {
        let n = self.norm();

        if n <= min_norm {
            None
        } else {
            self.unscale_mut(n.clone());
            Some(n)
        }
    }
}

impl<T: SimdComplexField, R: Dim, C: Dim> Normed for OMatrix<T, R, C>
where
    DefaultAllocator: Allocator<T, R, C>,
{
    type Norm = T::SimdRealField;

    #[inline]
    fn norm(&self) -> T::SimdRealField {
        self.norm()
    }

    #[inline]
    fn norm_squared(&self) -> T::SimdRealField {
        self.norm_squared()
    }

    #[inline]
    fn scale_mut(&mut self, n: Self::Norm) {
        self.scale_mut(n)
    }

    #[inline]
    fn unscale_mut(&mut self, n: Self::Norm) {
        self.unscale_mut(n)
    }
}

impl<T: Scalar + ClosedNeg, R: Dim, C: Dim> Neg for Unit<OMatrix<T, R, C>>
where
    DefaultAllocator: Allocator<T, R, C>,
{
    type Output = Unit<OMatrix<T, R, C>>;

    #[inline]
    fn neg(self) -> Self::Output {
        Unit::new_unchecked(-self.value)
    }
}

// TODO: specialization will greatly simplify this implementation in the future.
// In particular:
//   − use `x()` instead of `::canonical_basis_element`
//   − use `::new(x, y, z)` instead of `::from_slice`
/// # Basis and orthogonalization
impl<T: ComplexField, D: DimName> OVector<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    /// The i-the canonical basis element.
    #[inline]
    fn canonical_basis_element(i: usize) -> Self {
        let mut res = Self::zero();
        res[i] = T::one();
        res
    }

    /// Orthonormalizes the given family of vectors. The largest free family of vectors is moved at
    /// the beginning of the array and its size is returned. Vectors at an indices larger or equal to
    /// this length can be modified to an arbitrary value.
    #[inline]
    pub fn orthonormalize(vs: &mut [Self]) -> usize {
        let mut nbasis_elements = 0;

        for i in 0..vs.len() {
            {
                let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();

                for basis_element in &basis[..nbasis_elements] {
                    *elt -= &*basis_element * elt.dot(basis_element)
                }
            }

            if vs[i].try_normalize_mut(T::RealField::zero()).is_some() {
                // TODO: this will be efficient on dynamically-allocated vectors but for
                // statically-allocated ones, `.clone_from` would be better.
                vs.swap(nbasis_elements, i);
                nbasis_elements += 1;

                // All the other vectors will be dependent.
                if nbasis_elements == D::dim() {
                    break;
                }
            }
        }

        nbasis_elements
    }

    /// Applies the given closure to each element of the orthonormal basis of the subspace
    /// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is
    /// unspecified.
    // TODO: return an iterator instead when `-> impl Iterator` will be supported by Rust.
    #[inline]
    pub fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
    where
        F: FnMut(&Self) -> bool,
    {
        // TODO: is this necessary?
        assert!(
            vs.len() <= D::dim(),
            "The given set of vectors has no chance of being a free family."
        );

        match D::dim() {
            1 => {
                if vs.is_empty() {
                    let _ = f(&Self::canonical_basis_element(0));
                }
            }
            2 => {
                if vs.is_empty() {
                    let _ = f(&Self::canonical_basis_element(0))
                        && f(&Self::canonical_basis_element(1));
                } else if vs.len() == 1 {
                    let v = &vs[0];
                    let res = Self::from_column_slice(&[-v[1].clone(), v[0].clone()]);

                    let _ = f(&res.normalize());
                }

                // Otherwise, nothing.
            }
            3 => {
                if vs.is_empty() {
                    let _ = f(&Self::canonical_basis_element(0))
                        && f(&Self::canonical_basis_element(1))
                        && f(&Self::canonical_basis_element(2));
                } else if vs.len() == 1 {
                    let v = &vs[0];
                    let mut a;

                    if v[0].clone().norm1() > v[1].clone().norm1() {
                        a = Self::from_column_slice(&[v[2].clone(), T::zero(), -v[0].clone()]);
                    } else {
                        a = Self::from_column_slice(&[T::zero(), -v[2].clone(), v[1].clone()]);
                    };

                    let _ = a.normalize_mut();

                    if f(&a.cross(v)) {
                        let _ = f(&a);
                    }
                } else if vs.len() == 2 {
                    let _ = f(&vs[0].cross(&vs[1]).normalize());
                }
            }
            _ => {
                #[cfg(any(feature = "std", feature = "alloc"))]
                {
                    // XXX: use a GenericArray instead.
                    let mut known_basis = Vec::new();

                    for v in vs.iter() {
                        known_basis.push(v.normalize())
                    }

                    for i in 0..D::dim() - vs.len() {
                        let mut elt = Self::canonical_basis_element(i);

                        for v in &known_basis {
                            elt -= v * elt.dot(v)
                        }

                        if let Some(subsp_elt) = elt.try_normalize(T::RealField::zero()) {
                            if !f(&subsp_elt) {
                                return;
                            };

                            known_basis.push(subsp_elt);
                        }
                    }
                }
                #[cfg(all(not(feature = "std"), not(feature = "alloc")))]
                {
                    panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
                            if #![no_std] is enabled and the 'alloc' feature is not enabled.")
                }
            }
        }
    }
}