nalgebra/base/norm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use num::Zero;
use std::ops::Neg;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Dim, DimName, Matrix, Normed, OMatrix, OVector};
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::storage::{Storage, StorageMut};
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
use simba::scalar::ClosedNeg;
use simba::simd::{SimdOption, SimdPartialOrd, SimdValue};
// TODO: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<T: SimdComplexField> {
/// Apply this norm to the given matrix.
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<T, R, C>;
/// Use the metric induced by this norm to compute the metric distance between the two given matrices.
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>,
) -> T::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}
/// Euclidean norm.
#[derive(Copy, Clone, Debug)]
pub struct EuclideanNorm;
/// Lp norm.
#[derive(Copy, Clone, Debug)]
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
#[derive(Copy, Clone, Debug)]
pub struct UniformNorm;
impl<T: SimdComplexField> Norm<T> for EuclideanNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<T, R, C>,
{
m.norm_squared().simd_sqrt()
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>,
) -> T::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.simd_modulus_squared()
})
.simd_sqrt()
}
}
impl<T: SimdComplexField> Norm<T> for LpNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<T, R, C>,
{
m.fold(T::SimdRealField::zero(), |a, b| {
a + b.simd_modulus().simd_powi(self.0)
})
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>,
) -> T::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.simd_modulus().simd_powi(self.0)
})
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
}
}
impl<T: SimdComplexField> Norm<T> for UniformNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<T, R, C>,
{
// NOTE: we don't use `m.amax()` here because for the complex
// numbers this will return the max norm1 instead of the modulus.
m.fold(T::SimdRealField::zero(), |acc, a| {
acc.simd_max(a.simd_modulus())
})
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>,
) -> T::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| {
let val = (a - b).simd_modulus();
acc.simd_max(val)
})
}
}
/// # Magnitude and norms
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// The squared L2 norm of this vector.
#[inline]
#[must_use]
pub fn norm_squared(&self) -> T::SimdRealField
where
T: SimdComplexField,
{
let mut res = T::SimdRealField::zero();
for i in 0..self.ncols() {
let col = self.column(i);
res += col.dotc(&col).simd_real()
}
res
}
/// The L2 norm of this matrix.
///
/// Use `.apply_norm` to apply a custom norm.
#[inline]
#[must_use]
pub fn norm(&self) -> T::SimdRealField
where
T: SimdComplexField,
{
self.norm_squared().simd_sqrt()
}
/// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
///
/// Use `.apply_metric_distance` to apply a custom norm.
#[inline]
#[must_use]
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<T, R2, C2, S2>) -> T::SimdRealField
where
T: SimdComplexField,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
self.apply_metric_distance(rhs, &EuclideanNorm)
}
/// Uses the given `norm` to compute the norm of `self`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v = Vector3::new(1.0, 2.0, 3.0);
/// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
/// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
/// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
/// ```
#[inline]
#[must_use]
pub fn apply_norm(&self, norm: &impl Norm<T>) -> T::SimdRealField
where
T: SimdComplexField,
{
norm.norm(self)
}
/// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v1 = Vector3::new(1.0, 2.0, 3.0);
/// let v2 = Vector3::new(10.0, 20.0, 30.0);
///
/// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
/// ```
#[inline]
#[must_use]
pub fn apply_metric_distance<R2, C2, S2>(
&self,
rhs: &Matrix<T, R2, C2, S2>,
norm: &impl Norm<T>,
) -> T::SimdRealField
where
T: SimdComplexField,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
norm.metric_distance(self, rhs)
}
/// A synonym for the norm of this matrix.
///
/// Aka the length.
///
/// This function is simply implemented as a call to `norm()`
#[inline]
#[must_use]
pub fn magnitude(&self) -> T::SimdRealField
where
T: SimdComplexField,
{
self.norm()
}
/// A synonym for the squared norm of this matrix.
///
/// Aka the squared length.
///
/// This function is simply implemented as a call to `norm_squared()`
#[inline]
#[must_use]
pub fn magnitude_squared(&self) -> T::SimdRealField
where
T: SimdComplexField,
{
self.norm_squared()
}
/// Sets the magnitude of this vector.
#[inline]
pub fn set_magnitude(&mut self, magnitude: T::SimdRealField)
where
T: SimdComplexField,
S: StorageMut<T, R, C>,
{
let n = self.norm();
self.scale_mut(magnitude / n)
}
/// Returns a normalized version of this matrix.
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> OMatrix<T, R, C>
where
T: SimdComplexField,
DefaultAllocator: Allocator<T, R, C>,
{
self.unscale(self.norm())
}
/// The Lp norm of this matrix.
#[inline]
#[must_use]
pub fn lp_norm(&self, p: i32) -> T::SimdRealField
where
T: SimdComplexField,
{
self.apply_norm(&LpNorm(p))
}
/// Attempts to normalize `self`.
///
/// The components of this matrix can be SIMD types.
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize(&self, min_norm: T::SimdRealField) -> SimdOption<OMatrix<T, R, C>>
where
T: SimdComplexField,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
let n = self.norm();
let le = n.clone().simd_le(min_norm);
let val = self.unscale(n);
SimdOption::new(val, le)
}
/// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
///
/// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
/// Otherwise this is equivalent to: `*self = self.normalize() * magnitude.
#[inline]
pub fn try_set_magnitude(&mut self, magnitude: T::RealField, min_magnitude: T::RealField)
where
T: ComplexField,
S: StorageMut<T, R, C>,
{
let n = self.norm();
if n > min_magnitude {
self.scale_mut(magnitude / n)
}
}
/// Returns a new vector with the same magnitude as `self` clamped between `0.0` and `max`.
#[inline]
#[must_use]
pub fn cap_magnitude(&self, max: T::RealField) -> OMatrix<T, R, C>
where
T: ComplexField,
DefaultAllocator: Allocator<T, R, C>,
{
let n = self.norm();
if n > max {
self.scale(max / n)
} else {
self.clone_owned()
}
}
/// Returns a new vector with the same magnitude as `self` clamped between `0.0` and `max`.
#[inline]
#[must_use]
pub fn simd_cap_magnitude(&self, max: T::SimdRealField) -> OMatrix<T, R, C>
where
T: SimdComplexField,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
let n = self.norm();
let scaled = self.scale(max.clone() / n.clone());
let use_scaled = n.simd_gt(max);
scaled.select(use_scaled, self.clone_owned())
}
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
///
/// The components of this matrix cannot be SIMD types (see `simd_try_normalize`) instead.
#[inline]
#[must_use = "Did you mean to use try_normalize_mut()?"]
pub fn try_normalize(&self, min_norm: T::RealField) -> Option<OMatrix<T, R, C>>
where
T: ComplexField,
DefaultAllocator: Allocator<T, R, C>,
{
let n = self.norm();
if n <= min_norm {
None
} else {
Some(self.unscale(n))
}
}
}
/// # In-place normalization
impl<T: Scalar, R: Dim, C: Dim, S: StorageMut<T, R, C>> Matrix<T, R, C, S> {
/// Normalizes this matrix in-place and returns its norm.
///
/// The components of the matrix cannot be SIMD types (see `simd_try_normalize_mut` instead).
#[inline]
pub fn normalize_mut(&mut self) -> T::SimdRealField
where
T: SimdComplexField,
{
let n = self.norm();
self.unscale_mut(n.clone());
n
}
/// Normalizes this matrix in-place and return its norm.
///
/// The components of the matrix can be SIMD types.
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize_mut(
&mut self,
min_norm: T::SimdRealField,
) -> SimdOption<T::SimdRealField>
where
T: SimdComplexField,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
let n = self.norm();
let le = n.clone().simd_le(min_norm);
self.apply(|e| *e = e.clone().simd_unscale(n.clone()).select(le, e.clone()));
SimdOption::new(n, le)
}
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
///
/// If the normalization succeeded, returns the old norm of this matrix.
#[inline]
pub fn try_normalize_mut(&mut self, min_norm: T::RealField) -> Option<T::RealField>
where
T: ComplexField,
{
let n = self.norm();
if n <= min_norm {
None
} else {
self.unscale_mut(n.clone());
Some(n)
}
}
}
impl<T: SimdComplexField, R: Dim, C: Dim> Normed for OMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
type Norm = T::SimdRealField;
#[inline]
fn norm(&self) -> T::SimdRealField {
self.norm()
}
#[inline]
fn norm_squared(&self) -> T::SimdRealField {
self.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.scale_mut(n)
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.unscale_mut(n)
}
}
impl<T: Scalar + ClosedNeg, R: Dim, C: Dim> Neg for Unit<OMatrix<T, R, C>>
where
DefaultAllocator: Allocator<T, R, C>,
{
type Output = Unit<OMatrix<T, R, C>>;
#[inline]
fn neg(self) -> Self::Output {
Unit::new_unchecked(-self.value)
}
}
// TODO: specialization will greatly simplify this implementation in the future.
// In particular:
// − use `x()` instead of `::canonical_basis_element`
// − use `::new(x, y, z)` instead of `::from_slice`
/// # Basis and orthogonalization
impl<T: ComplexField, D: DimName> OVector<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
/// The i-the canonical basis element.
#[inline]
fn canonical_basis_element(i: usize) -> Self {
let mut res = Self::zero();
res[i] = T::one();
res
}
/// Orthonormalizes the given family of vectors. The largest free family of vectors is moved at
/// the beginning of the array and its size is returned. Vectors at an indices larger or equal to
/// this length can be modified to an arbitrary value.
#[inline]
pub fn orthonormalize(vs: &mut [Self]) -> usize {
let mut nbasis_elements = 0;
for i in 0..vs.len() {
{
let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();
for basis_element in &basis[..nbasis_elements] {
*elt -= &*basis_element * elt.dot(basis_element)
}
}
if vs[i].try_normalize_mut(T::RealField::zero()).is_some() {
// TODO: this will be efficient on dynamically-allocated vectors but for
// statically-allocated ones, `.clone_from` would be better.
vs.swap(nbasis_elements, i);
nbasis_elements += 1;
// All the other vectors will be dependent.
if nbasis_elements == D::dim() {
break;
}
}
}
nbasis_elements
}
/// Applies the given closure to each element of the orthonormal basis of the subspace
/// orthogonal to free family of vectors `vs`. If `vs` is not a free family, the result is
/// unspecified.
// TODO: return an iterator instead when `-> impl Iterator` will be supported by Rust.
#[inline]
pub fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
where
F: FnMut(&Self) -> bool,
{
// TODO: is this necessary?
assert!(
vs.len() <= D::dim(),
"The given set of vectors has no chance of being a free family."
);
match D::dim() {
1 => {
if vs.is_empty() {
let _ = f(&Self::canonical_basis_element(0));
}
}
2 => {
if vs.is_empty() {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1));
} else if vs.len() == 1 {
let v = &vs[0];
let res = Self::from_column_slice(&[-v[1].clone(), v[0].clone()]);
let _ = f(&res.normalize());
}
// Otherwise, nothing.
}
3 => {
if vs.is_empty() {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1))
&& f(&Self::canonical_basis_element(2));
} else if vs.len() == 1 {
let v = &vs[0];
let mut a;
if v[0].clone().norm1() > v[1].clone().norm1() {
a = Self::from_column_slice(&[v[2].clone(), T::zero(), -v[0].clone()]);
} else {
a = Self::from_column_slice(&[T::zero(), -v[2].clone(), v[1].clone()]);
};
let _ = a.normalize_mut();
if f(&a.cross(v)) {
let _ = f(&a);
}
} else if vs.len() == 2 {
let _ = f(&vs[0].cross(&vs[1]).normalize());
}
}
_ => {
#[cfg(any(feature = "std", feature = "alloc"))]
{
// XXX: use a GenericArray instead.
let mut known_basis = Vec::new();
for v in vs.iter() {
known_basis.push(v.normalize())
}
for i in 0..D::dim() - vs.len() {
let mut elt = Self::canonical_basis_element(i);
for v in &known_basis {
elt -= v * elt.dot(v)
}
if let Some(subsp_elt) = elt.try_normalize(T::RealField::zero()) {
if !f(&subsp_elt) {
return;
};
known_basis.push(subsp_elt);
}
}
}
#[cfg(all(not(feature = "std"), not(feature = "alloc")))]
{
panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
if #![no_std] is enabled and the 'alloc' feature is not enabled.")
}
}
}
}
}