ncollide3d/pipeline/object/
collision_object.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
use crate::bounding_volume::{self, BoundingVolume, AABB};
use crate::math::Isometry;
use crate::pipeline::broad_phase::BroadPhaseProxyHandle;
use crate::pipeline::narrow_phase::CollisionObjectGraphIndex;
use crate::pipeline::object::CollisionGroups;
use crate::pipeline::object::GeometricQueryType;
use crate::shape::{Shape, ShapeHandle};
use simba::scalar::RealField;

bitflags! {
    #[derive(Default)]
    /// Flags indicating what changed in a collision object since the last collision world update.
    pub struct CollisionObjectUpdateFlags: u8 {
        /// Indicate that the collision object's position changed.
        const POSITION_CHANGED = 0b00000001;
        /// Indicate that the collision object's predicted position changed.
        const PREDICTED_POSITION_CHANGED = 0b00000010;
        /// Indicate that the collision object's shape changed.
        const SHAPE_CHANGED = 0b000100;
        /// Indicate that the collision object's collision group changed.
        const COLLISION_GROUPS_CHANGED = 0b001000;
        /// Indicate that the collision object's geometric query type changed.
        const QUERY_TYPE_CHANGED = 0b0010000;
    }
}

impl CollisionObjectUpdateFlags {
    /// Checks if the collision object has been changed in a way that justify a broad-phase update.
    pub fn needs_broad_phase_update(&self) -> bool {
        !self.is_empty()
    }

    /// Checks if the collision object has been changed in a way that justify a narrow-phase update.
    pub fn needs_narrow_phase_update(&self) -> bool {
        // The only change that does not trigger an update
        // is a change on predicted position.
        self.intersects(
            Self::POSITION_CHANGED
                | Self::SHAPE_CHANGED
                | Self::COLLISION_GROUPS_CHANGED
                | Self::QUERY_TYPE_CHANGED,
        )
    }

    /// Checks if the collision object has been changed in a way that justify an update of its bounding volume.
    pub fn needs_bounding_volume_update(&self) -> bool {
        // NOTE: the QUERY_TYPE_CHANGED is included here because the
        // prediction margin may have changed.
        self.intersects(Self::POSITION_CHANGED | Self::SHAPE_CHANGED | Self::QUERY_TYPE_CHANGED)
    }

    /// Checks if the collision object has been changed in a way that justify that the broad-phase
    /// recompute all potential proximity pairs for this collision objects.
    pub fn needs_broad_phase_redispatch(&self) -> bool {
        self.intersects(
            Self::SHAPE_CHANGED | Self::COLLISION_GROUPS_CHANGED | Self::QUERY_TYPE_CHANGED,
        )
    }
}

/// Trait implemented by collision objects.
pub trait CollisionObjectRef<N: RealField + Copy> {
    /// The interaction graph index of this collision object, if it has been registered into an interaction graph.
    ///
    /// Se the `glue::create_proxies` for more details.
    fn graph_index(&self) -> Option<CollisionObjectGraphIndex>;
    /// The broad-phase proxy handle of this collision object, if it has been registered into a broad-phase.
    ///
    /// Se the `glue::create_proxies` for more details.
    fn proxy_handle(&self) -> Option<BroadPhaseProxyHandle>;
    /// The position of this collision object.
    fn position(&self) -> &Isometry<N>;
    /// The expected position of this collision object in the next updates.
    ///
    /// This is used to enlarge the collision object bounding volume such that at yields more potential interaction pairs.
    /// This is typically needed for CCD (continuous collision detection) to be sure the broad-phase does not miss pential
    /// interactions in-between two discontinuous positions of the collision object.
    fn predicted_position(&self) -> Option<&Isometry<N>>;
    /// The shape of this collision object.
    fn shape(&self) -> &dyn Shape<N>;
    /// The collision groups of this collision object.
    fn collision_groups(&self) -> &CollisionGroups;
    /// The type of geometric queries this collision object is subjected to.
    fn query_type(&self) -> GeometricQueryType<N>;
    /// Flags indicating what changed in this collision object.
    fn update_flags(&self) -> CollisionObjectUpdateFlags;

    /// Computes the AABB of this collision object, ignoring `self.predicted_position()`.
    fn compute_aabb(&self) -> AABB<N> {
        let mut aabb = bounding_volume::aabb(self.shape(), self.position());
        aabb.loosen(self.query_type().query_limit());
        aabb
    }

    /// Computes the swept AABB of this collision object, taking `self.predict_position()` into account.
    ///
    /// Given the AABB of this collision object at the position `self.position()’, and the AABB of
    /// this collision object at the position `self.predicted_position()`, this returns an AABB that
    /// bounds both.
    fn compute_swept_aabb(&self) -> AABB<N> {
        if let Some(predicted_pos) = self.predicted_position() {
            let shape = self.shape();
            let mut aabb1 = bounding_volume::aabb(shape, self.position());
            let mut aabb2 = bounding_volume::aabb(shape, predicted_pos);
            let margin = self.query_type().query_limit();
            aabb1.loosen(margin);
            aabb2.loosen(margin);
            aabb1.merge(&aabb2);
            aabb1
        } else {
            self.compute_aabb()
        }
    }
}

/// The unique identifier of a collision object stored in a `CollisionObjectSlab` structure.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct CollisionObjectSlabHandle(pub usize);

impl CollisionObjectSlabHandle {
    /// The unique identifier corresponding to this handle.
    #[inline]
    pub fn uid(&self) -> usize {
        self.0
    }
}

/// A stand-alone object that has a position and a shape.
pub struct CollisionObject<N: RealField + Copy, T> {
    proxy_handle: Option<BroadPhaseProxyHandle>,
    graph_index: Option<CollisionObjectGraphIndex>,
    position: Isometry<N>,
    predicted_position: Option<Isometry<N>>,
    shape: ShapeHandle<N>,
    collision_groups: CollisionGroups,
    query_type: GeometricQueryType<N>,
    update_flags: CollisionObjectUpdateFlags,
    data: T,
}

impl<N: RealField + Copy, T> CollisionObject<N, T> {
    /// Creates a new collision object.
    pub fn new(
        proxy_handle: Option<BroadPhaseProxyHandle>,
        graph_index: Option<CollisionObjectGraphIndex>,
        position: Isometry<N>,
        shape: ShapeHandle<N>,
        groups: CollisionGroups,
        query_type: GeometricQueryType<N>,
        data: T,
    ) -> CollisionObject<N, T> {
        CollisionObject {
            proxy_handle,
            graph_index,
            position,
            predicted_position: None,
            shape,
            collision_groups: groups,
            data,
            query_type,
            update_flags: CollisionObjectUpdateFlags::all(),
        }
    }

    /// The collision object non-stable graph index.
    ///
    /// This index may change whenever a collision object is removed from the world.
    #[inline]
    pub fn graph_index(&self) -> Option<CollisionObjectGraphIndex> {
        self.graph_index
    }

    /// Sets the collision object unique but non-stable graph index.
    #[inline]
    pub fn set_graph_index(&mut self, index: Option<CollisionObjectGraphIndex>) {
        self.graph_index = index
    }

    /// Mutable reference to this collision object's update flags.
    pub fn update_flags_mut(&mut self) -> &mut CollisionObjectUpdateFlags {
        &mut self.update_flags
    }

    /// Clears the update flags of this collision object.
    pub fn clear_update_flags(&mut self) {
        self.update_flags = CollisionObjectUpdateFlags::empty()
    }

    /// The collision object's broad phase proxy unique identifier.
    #[inline]
    pub fn proxy_handle(&self) -> Option<BroadPhaseProxyHandle> {
        self.proxy_handle
    }

    /// Set collision object's broad phase proxy unique identifier.
    #[inline]
    pub fn set_proxy_handle(&mut self, handle: Option<BroadPhaseProxyHandle>) {
        self.proxy_handle = handle
    }

    /// The collision object position.
    #[inline]
    pub fn position(&self) -> &Isometry<N> {
        &self.position
    }

    /// The predicted collision object position.
    #[inline]
    pub fn predicted_position(&self) -> Option<&Isometry<N>> {
        self.predicted_position.as_ref()
    }

    /// Sets the position of the collision object and resets the predicted position to None.
    #[inline]
    pub fn set_position(&mut self, pos: Isometry<N>) {
        self.update_flags |= CollisionObjectUpdateFlags::POSITION_CHANGED;
        self.update_flags |= CollisionObjectUpdateFlags::PREDICTED_POSITION_CHANGED;
        self.position = pos;
        self.predicted_position = None;
    }

    /// Sets the position of the collision object and resets the predicted position.
    #[inline]
    pub fn set_position_with_prediction(&mut self, pos: Isometry<N>, prediction: Isometry<N>) {
        self.update_flags |= CollisionObjectUpdateFlags::POSITION_CHANGED;
        self.update_flags |= CollisionObjectUpdateFlags::PREDICTED_POSITION_CHANGED;
        self.position = pos;
        self.predicted_position = Some(prediction);
    }

    /// Sets the predicted position of the collision object.
    #[inline]
    pub fn set_predicted_position(&mut self, pos: Option<Isometry<N>>) {
        self.update_flags |= CollisionObjectUpdateFlags::PREDICTED_POSITION_CHANGED;
        self.predicted_position = pos;
    }

    /// Deforms the underlying shape if possible.
    ///
    /// Panics if the shape is not deformable.
    #[inline]
    pub fn set_deformations(&mut self, coords: &[N]) {
        self.update_flags |= CollisionObjectUpdateFlags::POSITION_CHANGED;
        self.shape
            .make_mut()
            .as_deformable_shape_mut()
            .expect("Attempting to deform a non-deformable shape.")
            .set_deformations(coords)
    }

    /// The collision object shape.
    #[inline]
    pub fn shape(&self) -> &ShapeHandle<N> {
        &self.shape
    }

    /// Set the collision object shape.
    #[inline]
    pub fn set_shape(&mut self, shape: ShapeHandle<N>) {
        self.update_flags |= CollisionObjectUpdateFlags::SHAPE_CHANGED;
        self.shape = shape
    }

    /// The collision groups of the collision object.
    #[inline]
    pub fn collision_groups(&self) -> &CollisionGroups {
        &self.collision_groups
    }

    /// Sets the collision groups of this collision object.
    #[inline]
    pub fn set_collision_groups(&mut self, groups: CollisionGroups) {
        self.update_flags |= CollisionObjectUpdateFlags::COLLISION_GROUPS_CHANGED;
        self.collision_groups = groups
    }

    /// The kind of queries this collision object is expected to .
    #[inline]
    pub fn query_type(&self) -> GeometricQueryType<N> {
        self.query_type
    }

    /// Sets the `GeometricQueryType` of the collision object.
    /// Use `CollisionWorld::set_query_type` to use this method.
    #[inline]
    pub fn set_query_type(&mut self, query_type: GeometricQueryType<N>) {
        self.update_flags |= CollisionObjectUpdateFlags::QUERY_TYPE_CHANGED;
        self.query_type = query_type;
    }

    /// Reference to the user-defined data associated to this object.
    #[inline]
    pub fn data(&self) -> &T {
        &self.data
    }

    /// Mutable reference to the user-defined data associated to this object.
    #[inline]
    pub fn data_mut(&mut self) -> &mut T {
        &mut self.data
    }
}

impl<N: RealField + Copy, T> CollisionObjectRef<N> for CollisionObject<N, T> {
    fn graph_index(&self) -> Option<CollisionObjectGraphIndex> {
        self.graph_index()
    }

    fn proxy_handle(&self) -> Option<BroadPhaseProxyHandle> {
        self.proxy_handle()
    }

    fn position(&self) -> &Isometry<N> {
        self.position()
    }

    fn predicted_position(&self) -> Option<&Isometry<N>> {
        self.predicted_position()
    }

    fn shape(&self) -> &dyn Shape<N> {
        self.shape().as_ref()
    }

    fn collision_groups(&self) -> &CollisionGroups {
        self.collision_groups()
    }

    fn query_type(&self) -> GeometricQueryType<N> {
        self.query_type()
    }

    fn update_flags(&self) -> CollisionObjectUpdateFlags {
        self.update_flags
    }
}