abi_stable/proc_macro_reexports/sabi_trait_attribute.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/**
This attribute generates an ffi-safe trait object on the trait it's applied to.
All items outside the list of generated items comes from [`abi_stable::sabi_trait`].
# Supertraits.
By default these are the supertraits that `#[sabi_trait]` traits can have:
- lifetimes: It can be a lifetime declared by the trait, or `'static`.
- `Debug`
- `Display`
- `std::error::Error`: Written as `Error`: The `Error` methods aren't delegated to,
it uses the default implementation,
- `Clone`
- `Send`
- `Sync`
- `Unpin`
To be able to have more supertraits you must use the `#[sabi(use_dyntrait)]` helper attribute,
which changes the underlying implementation from [`RObject`] to [`DynTrait`],
allowing these supertraits:
- `Iterator`: requires the Item type to be specified.
- `DoubleEndedIterator`: requires the Item type to be specified.
- `std::fmt::Write`: Written as `FmtWrite`
- `std::io::Write`: Written as `IoWrite`
- `std::io::Seek`: Written as `IoSeek`
- `std::io::Read`: Written as `IoRead`
- `std::io::BufRead`: Written as `IoBufRead`
- `Eq`
- `PartialEq`
- `Ord`
- `PartialOrd`
- `Hash`
### Supertrait Extensibility
The properties described below are checked when `abi_stable` loads a dynamic library.
Traits can add non-marker supertraits in minor versions without breaking ABI compatibility,
with the (non-ABI related) caveats described in the extensibility section.
Traits cannot add marker supertraits in minor versions ABI compatibly,
because that would cause problems with thread/memory safety if allowed.
If it were allowed,`!Send` trait objects could be passed from a binary to
a dynamic library(where the trait object type is `Send`),
and that would be Undefined Behavior in many situations.
# Extensibility
`#[sabi_trait]` trait objects are (ABI-wise) safe to extend in minor versions,
so long as methods are always added at the end, preferably as default methods.
A library will not load (through safe means) if methods are added anywhere but the end.
Accidentally calling newer methods on trait objects from older versions of a
library will cause a panic at runtime, unless it has a default implementation
(within the trait definition that `#[sabi_trait]` can see).
Panics can only happen if one loads multiple versions of a library,
where the trait is extended in each version(without using default methods),
and passes trait objects among those libraries.
# Generated items.
This is a nonexhaustive list of the items generated by the attribute,
where `Trait` is the name of the annotated trait.
### `Trait_trait`
This is the module inside of which all the items are generated.
These are the items reexported from the module:
- [`Trait`](#trait): The trait itself.
- [`Trait_TO`](#trait_to): The trait object for the trait.
- [`Trait_CTO`](#trait_cto):
A type alias for the trait object which is constructible in constants.
### `Trait_TO`
The ffi-safe trait object.
[Its inherent methods are documented here.
](./docs/sabi_trait_inherent/index.html#methods)
`Trait_TO` has inherent method equivalents of the trait methods,
only requiring the wrapped pointer to implement the trait in the individual methods
(instead of putting those bounds in the impl block itself).
<br>
This only implements `Trait` if all the methods are callable,
when the wrapped pointer type implements traits for these methods:
- `&self` method: requires `AsPtr<PtrTarget = ()>`.
- `&mut self` method: requires `AsMutPtr<PtrTarget = ()>`.
- `self` method: requires `OwnedPointer<PtrTarget = ()>`.
<br>
Trait_TO has these generic parameters(in order):
- `'trait_lifetime_n`: The lifetime parameters of the trait, if any.
- `'lt`:
This is the lifetime of the type that the trait object was constructed with.
If the trait requires `'static`(in the list of supertraits),
then it doesn't have this lifetime parameter.
- `Pointer`:
An pointer whose referent has been erased,
most commonly [`RBox<()>`]/[`RArc<()>`]/[`RRef<'_, ()>`]/[`RMut<'_, ()>`].
- `trait_type_param_n`: The type parameters of the trait.
- `trait_const_param_n`: The const parameters of the trait.
- `trait_assoc_type_n`: The associated types of the trait.
A trait defined like this: `trait Foo<'a, T, U>{ type Hello; type World; }`,
has this trait object: `Foo_TO<'a, 'lt, Pointer, T, U, Hello, World>`.
<br>
One can access the underlying implementation of the trait object through the `obj` field,
allowing one to call these methods(a nonexhaustive list):
- `downcast_into`
- `downcast_as`
- `downcast_as_mut`
To reconstruct `Trait_TO` from its underlying implementation,
you can use the `Trait_TO::from_sabi` associated function.
### Trait_CTO
A type alias for the type of the trait objct that is constructible in constants,
with the `from_const` constructor function.
Constructed with `Trait_CTO::from_const(&value)`.
Trait_CTO has these generic parameters(in order):
- `'trait_lifetime_n`: The lifetime parameters of the trait, if any.
- `'lt`: this is the lifetime of the type that the trait object was construct with.
If the trait requires `'static`(in the list of supertraits),
then it doesn't have this lifetime parameter.
- `'_ref`: this is the lifetime of the reference that this was constructed with.
- `trait_type_param_n`: The type parameters of the trait.
- `trait_const_param_n`: The const parameters of the trait.
- `trait_assoc_type_n`: The associated types of the trait.
Example: `Trait_CTO<'lt, 'r, u8, u64, 10, AssocFoo>`
### Trait
The trait is defined similarly to how it is before being transformed by the
`#[sabi_trait]` attribute.
These are the differences:
- If there is a by-value method, a `Self: Sized` constraint will be added automatically.
- Lifetime supertraits are stripped, because they disallow the trait object to be
constructed with a reference of a smaller lifetime.
# VTable attributes
To pass attributes to the generated vtable you can use the `#[sabi( )]` attributes
that are valid for `#[derive(StableAbi)]`.
[Here is the documentation for the derive macro.
](./derive.StableAbi.html)
# Trait attributes.
These are attributes for the generated trait, applied on the trait(not on methods).
### `#[sabi(no_trait_impl)]`
Disables the implementation of the trait for the trait object,
you can still call the inherent versions of those methods on the trait object.
This is useful to reduce compile-time overhead,
and to allow users to declare a blanket(generic) implementation of the trait.
### `#[sabi(no_default_fallback)]`
Stops using default implementation of methods (from the trait declaration)
as the fallback implementation of the method when it's not in the vtable,
because the trait object comes from a previous version of the library.
By using this attribute, defaulted methods will behave the same as
non-defaulted methods when they don't exist in the vtable.
### `#[sabi(debug_print_trait)]`
Prints the output generated by the attribute macro,
Note that this does not expand the output of the
`#[derive(StableAbi)]` attribute on the vtable.
### `#[sabi(use_dyntrait)]`
Changes how the trait object is implemented to use `DynTrait` instead of `RObject`,
this allows using more traits, with the (potential) cost of having more overhead.
# Associated types
The only valid way to refer to associated types in the trait declaration is with
`Self::AssocType` syntax.
Associated types in the trait object are transformed into type parameters
that come after those of the trait.
# Object safety
Trait objects generated using this attribute have similar restrictions to built-in trait objects:
- `Self` can only be used to access associated types
(using the `Self::AssocType` syntax).
- `self` is a valid method receiver,
this requires that the pointer that the generated trait object wraps
implements `abi_stable::pointer_trait::OwnedPointer`.
# Questions and Answers
**Question: ** Why does Calling from_ptr/from_value give me a expected a `'static` value error?
Answer: There are 3 possible reasons
- 1: Because the trait has a `'static` supertrait bound.
- 2: Because the trait has one of the comparison traits
(`Eq`/`PartialEq`/`Ord`/`PartialOrd`)
as supertraits.
This requires the type to be `'static` because comparing trait objects requires
constructing a `std::any::TypeId`, which itself requires `'static` to be constructed.
- 3: Because you passed `TD_CanDowncast` to the constructor function,
which requires constructing a `std::any::TypeId`
(to unerase the trait object back into the value),
which itself requires `'static` to be constructed.
# Examples
### Dictionary trait
```rust
use abi_stable::{
sabi_trait,
sabi_trait::prelude::*,
std_types::{RArc, RBox, RNone, ROption, RStr, RString},
StableAbi,
};
use std::{collections::HashMap, fmt::Debug};
#[sabi_trait]
pub trait Dictionary: Debug + Clone {
type Value;
fn get(&self, key: RStr<'_>) -> Option<&Self::Value>;
/// The `#[sabi(last_prefix_field)]` attribute here means that this is the last method
/// that was defined in the first compatible version of the library
/// (0.1.0, 0.2.0, 0.3.0, 1.0.0, 2.0.0 , etc),
/// requiring new methods to always be added below preexisting ones.
///
/// The `#[sabi(last_prefix_field)]` attribute would stay on this method until the library
/// bumps its "major" version,
/// at which point it would be moved to the last method at the time.
///
#[sabi(last_prefix_field)]
fn insert(&mut self, key: RString, value: Self::Value) -> ROption<Self::Value>;
/// It's semver compatible to add defaulted methods below previously-defined ones in
/// minor version updates.
fn contains(&self, key: RStr<'_>) -> bool {
self.get(key).is_some()
}
}
# fn main() {
{
impl<V> Dictionary for HashMap<RString, V>
where
V: Debug + Clone,
{
type Value = V;
fn get(&self, key: RStr<'_>) -> Option<&V> {
self.get(key.as_str())
}
fn insert(&mut self, key: RString, value: V) -> ROption<V> {
self.insert(key, value).into()
}
}
let mut map = HashMap::<RString, u32>::new();
map.insert("hello".into(), 100);
map.insert("world".into(), 10);
{
// This type annotation is for the reader
//
// You can unerase trait objects constructed with `TD_CanDowncast`
// (as opposed to `TD_Opaque`, which can't be unerased).
let mut object: Dictionary_TO<'_, RBox<()>, u32> =
Dictionary_TO::from_value(map.clone(), TD_CanDowncast);
assert_eq!(Dictionary::get(&object, "hello".into()), Some(&100));
assert_eq!(object.get("hello".into()), Some(&100)); // Inherent method call
assert_eq!(Dictionary::get(&object, "world".into()), Some(&10));
assert_eq!(object.get("world".into()), Some(&10)); // Inherent method call
object.insert("what".into(), 99); // Inherent method call
// You can only unerase a trait object if it was constructed with `TD_CanDowncast`
// and it's being unerased into a type that implements `std::any::Any`.
let map: RBox<HashMap<RString, u32>> = object.obj.downcast_into().unwrap();
assert_eq!(map.get("hello".into()), Some(&100));
assert_eq!(map.get("world".into()), Some(&10));
assert_eq!(map.get("what".into()), Some(&99));
}
{
let arc = RArc::new(map.clone());
// This type annotation is for the reader
//
// You can unerase trait objects constructed with `TD_CanDowncast`
// (as opposed to `TD_Opaque`, which can't be unerased).
let object: Dictionary_TO<'_, RArc<()>, u32> =
Dictionary_TO::from_ptr(arc, TD_CanDowncast);
assert_eq!(object.get("world".into()), Some(&10));
// Can't call these methods on `Dictionary_TO<RArc<()>,..>`
// because `RArc<_>` doesn't implement AsMutPtr.
//
// assert_eq!(Dictionary::get(&object,"hello"), Some(&100));
//
// object.insert("what".into(), 99);
// Dictionary::insert(&mut object,"what".into(), 99);
let map: RArc<HashMap<RString, u32>> = object.obj.downcast_into().unwrap();
assert_eq!(map.get("hello".into()), Some(&100));
assert_eq!(map.get("world".into()), Some(&10));
}
}
{
impl Dictionary for () {
type Value = RString;
fn get(&self, _: RStr<'_>) -> Option<&RString> {
None
}
fn insert(&mut self, _: RString, _: RString) -> ROption<RString> {
RNone
}
}
// This type annotation is for the reader
let object: Dictionary_TO<'_, RBox<()>, RString> =
Dictionary_TO::from_value((), TD_Opaque);
assert_eq!(object.get("hello".into()), None);
assert_eq!(object.get("world".into()), None);
// Cannot unerase trait objects created with `TD_Opaque`.
assert_eq!(object.obj.downcast_into::<()>().ok(), None);
}
# }
```
### Constructing a trait object in a constant
This shows how one can construct a `#[sabi_trait]` generated trait object in a constant/static.
```rust
use abi_stable::{sabi_trait, sabi_trait::TD_Opaque};
#[sabi_trait]
pub trait StaticSet: Sync + Send + Debug + Clone {
type Element;
/// Whether the set contains the key.
fn contains(&self, key: &Self::Element) -> bool;
}
impl<'a, T> StaticSet for &'a [T]
where
T: std::fmt::Debug + Sync + Send + std::cmp::PartialEq,
{
type Element = T;
fn contains(&self, key: &Self::Element) -> bool {
(**self).contains(key)
}
}
const CARDS: &'static [char] =
&['A', '2', '3', '4', '5', '6', '7', '8', '9', 'J', 'Q', 'K'];
static IS_CARD: StaticSet_CTO<'static, 'static, char> =
StaticSet_CTO::from_const(&CARDS, TD_Opaque);
# fn main(){
assert!(IS_CARD.contains(&'A'));
assert!(IS_CARD.contains(&'4'));
assert!(IS_CARD.contains(&'7'));
assert!(IS_CARD.contains(&'9'));
assert!(IS_CARD.contains(&'J'));
assert!(!IS_CARD.contains(&'0'));
assert!(!IS_CARD.contains(&'1'));
assert!(!IS_CARD.contains(&'B'));
# }
```
### Cloning an `RArc`-using trait object.
Because of a quirk of how `#[sabi_trait]` trait objects work,
trait objects that use [`RArc`] can only be `.clone()`d if they
have a `Clone` supertrait.
To work around this, you can use the
[`RObject::shallow_clone`] /[`DynTrait::shallow_clone`] methods.
```rust
use abi_stable::{
sabi_trait,
sabi_trait::TD_Opaque,
std_types::RArc,
};
# fn main() {
let object = Foo_TO::from_ptr(RArc::new(SomeDay{day: 10}), TD_Opaque);
// calling `RObject::shallow_clone` to clone the `RArc`-based trait object,
// now both have a `RArc` handle to the same data.
let clone = Foo_TO::from_sabi(object.obj.shallow_clone());
assert_eq!(format!("{:?}", object), format!("{:?}", clone));
# }
#[sabi_trait]
pub trait Foo: Sync + Send + Debug {}
#[derive(Debug)]
struct SomeDay {
day: u32,
}
impl Foo for SomeDay {}
```
[`abi_stable::sabi_trait`]: ./sabi_trait/index.html
[`RObject`]: crate::sabi_trait::RObject
[`RObject::shallow_clone`]: crate::sabi_trait::RObject::shallow_clone
[`DynTrait::shallow_clone`]: crate::DynTrait::shallow_clone
[`DynTrait`]: crate::DynTrait
[`RBox<()>`]: ./std_types/struct.RBox.html
[`RArc<()>`]: ./std_types/struct.RArc.html
[`RArc`]: ./std_types/struct.RArc.html
[`RRef<'_, ()>`]: ./sabi_types/struct.RRef.html
[`RMut<'_, ()>`]: ./sabi_types/struct.RMut.html
*/
#[doc(inline)]
pub use abi_stable_derive::sabi_trait;