openrr_planner/collision/
collision_detector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*
Copyright 2017 Takashi Ogura

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
use std::{
    collections::HashMap,
    path::Path,
    time::{Duration, Instant},
};

use k::nalgebra as na;
use na::RealField;
use ncollide3d::{
    partitioning::{BVH, BVT},
    query,
    shape::{Compound, Shape, ShapeHandle},
};
use tracing::{debug, warn};

use super::urdf::{k_link_geometry_to_shape_handle, urdf_geometry_to_shape_handle};
use crate::errors::*;

type NameShapeMap<T> = HashMap<String, Vec<(ShapeHandle<T>, na::Isometry3<T>)>>;

/// Lists collisions between a robot and an object
pub struct EnvCollisionNames<'a, 'b, T>
where
    T: RealField + Copy,
{
    detector: &'a CollisionDetector<T>,
    target_shape: &'b dyn Shape<T>,
    target_pose: &'b na::Isometry3<T>,
    joints: Vec<&'b k::Node<T>>,
    index: usize,
}

impl<'a, 'b, T> EnvCollisionNames<'a, 'b, T>
where
    T: RealField + Copy + k::SubsetOf<f64>,
{
    pub fn new(
        detector: &'a CollisionDetector<T>,
        robot: &'b k::Chain<T>,
        target_shape: &'b dyn Shape<T>,
        target_pose: &'b na::Isometry3<T>,
    ) -> Self {
        robot.update_transforms();
        let joints = robot.iter().collect();
        Self {
            detector,
            target_shape,
            target_pose,
            joints,
            index: 0,
        }
    }
}

impl<T> Iterator for EnvCollisionNames<'_, '_, T>
where
    T: RealField + Copy + k::SubsetOf<f64>,
{
    type Item = String;

    fn next(&mut self) -> Option<String> {
        if self.joints.len() <= self.index {
            return None;
        }
        let joint = self.joints[self.index];
        self.index += 1;

        // Get the absolute (world) pose and name of the specified node
        let joint_pose = joint.world_transform().unwrap();
        let joint_name = &joint.joint().name;

        match self.detector.name_collision_model_map.get(joint_name) {
            Some(obj_vec) => {
                // Check potential conflicts by an AABB-based sweep and prune algorithm
                for obj in obj_vec {
                    let obj_pose = joint_pose * obj.1;
                    let aabb1 = obj.0.aabb(&(obj_pose));
                    let aabb2 = self.target_shape.aabb(self.target_pose);

                    let bvt = BVT::new_balanced(vec![(0usize, aabb2)]);

                    let mut collector = Vec::<usize>::new();
                    let mut visitor = query::visitors::BoundingVolumeInterferencesCollector::new(
                        &aabb1,
                        &mut collector,
                    );

                    bvt.visit(&mut visitor);

                    if !collector.is_empty() {
                        // Check conflicts precisely
                        let dist = query::distance(
                            &obj_pose,
                            &*obj.0,
                            self.target_pose,
                            self.target_shape,
                        );
                        // proximity and prediction does not work correctly for meshes.
                        if dist < self.detector.prediction {
                            debug!("name: {joint_name}, dist={dist}");
                            return Some(joint_name.to_owned());
                        }
                    }
                }
            }
            None => {
                debug!("collision model {joint_name} not found");
            }
        }
        self.next()
    }
}

/// Lists collisions inside robot links
pub struct SelfCollisionPairs<'a, T>
where
    T: RealField + Copy,
{
    detector: &'a CollisionDetector<T>,
    robot: &'a k::Chain<T>,
    self_collision_pairs: &'a [(String, String)],
    index: usize,
    used_duration: HashMap<String, Duration>,
}

impl<'a, T> SelfCollisionPairs<'a, T>
where
    T: RealField + Copy + k::SubsetOf<f64>,
{
    pub fn new(
        detector: &'a CollisionDetector<T>,
        robot: &'a k::Chain<T>,
        self_collision_pairs: &'a [(String, String)],
    ) -> Self {
        robot.update_transforms();
        Self {
            detector,
            robot,
            self_collision_pairs,
            index: 0,
            used_duration: HashMap::new(),
        }
    }

    /// Get the information about which part is the most heaviest.
    pub fn used_duration(&self) -> &HashMap<String, Duration> {
        &self.used_duration
    }
}

impl<T> Iterator for SelfCollisionPairs<'_, T>
where
    T: RealField + Copy + k::SubsetOf<f64>,
{
    type Item = (String, String);

    fn next(&mut self) -> Option<(String, String)> {
        if self.self_collision_pairs.len() <= self.index {
            return None;
        }
        let (j1, j2) = &self.self_collision_pairs[self.index];
        self.index += 1;

        // Get the collision models of the specified 2 nodes
        let obj_vec1 = match self.detector.name_collision_model_map.get(j1) {
            Some(v) => v,
            None => {
                warn!("Collision model {j1} not found");
                return self.next();
            }
        };
        let obj_vec2 = match self.detector.name_collision_model_map.get(j2) {
            Some(v) => v,
            None => {
                warn!("Collision model {j2} not found");
                return self.next();
            }
        };

        // Get the absolute (world) poses of the specified 2 nodes
        let pose1 = match self.robot.find(j1) {
            Some(v) => v.world_transform().unwrap(),
            None => {
                warn!("self_colliding: joint {j1} not found");
                return self.next();
            }
        };
        let pose2 = match self.robot.find(j2) {
            Some(v) => v.world_transform().unwrap(),
            None => {
                warn!("self_colliding: joint {j2} not found");
                return self.next();
            }
        };

        // Check potential conflicts by an AABB-based sweep and prune algorithm
        let start_time = Instant::now();
        for obj1 in obj_vec1 {
            let aabb1 = obj1.0.aabb(&(pose1 * obj1.1));

            let index_and_aabb = obj_vec2
                .iter()
                .enumerate()
                .map(|(index, obj)| (index, obj.0.aabb(&(pose2 * obj.1))))
                .collect();
            let bvt = BVT::new_balanced(index_and_aabb);

            let mut collector = Vec::<usize>::new();
            let mut visitor =
                query::visitors::BoundingVolumeInterferencesCollector::new(&aabb1, &mut collector);

            bvt.visit(&mut visitor);

            if !collector.is_empty() {
                // Check conflicts precisely
                for index in collector {
                    let obj2 = &obj_vec2[index];

                    // proximity and predict does not work correctly for mesh
                    let dist =
                        query::distance(&(pose1 * obj1.1), &*obj1.0, &(pose2 * obj2.1), &*obj2.0);
                    debug!("name: {j1}, name: {j2} dist={dist}");
                    if dist < self.detector.prediction {
                        return Some((j1.to_owned(), j2.to_owned()));
                    }
                }
            }
        }

        // Record the time used for this collision checking
        let elapsed = start_time.elapsed();
        *self
            .used_duration
            .entry(j1.to_owned())
            .or_insert_with(|| Duration::from_nanos(0)) += elapsed;
        *self
            .used_duration
            .entry(j2.to_owned())
            .or_insert_with(|| Duration::from_nanos(0)) += elapsed;

        self.next()
    }
}

#[derive(Clone)]
/// Collision detector
pub struct CollisionDetector<T>
where
    T: RealField + Copy,
{
    name_collision_model_map: NameShapeMap<T>,
    /// margin length for collision detection
    pub prediction: T,
}

impl<T> CollisionDetector<T>
where
    T: RealField + Copy + k::SubsetOf<f64>,
{
    /// Create CollisionDetector from HashMap
    pub fn new(name_collision_model_map: NameShapeMap<T>, prediction: T) -> Self {
        CollisionDetector {
            name_collision_model_map,
            prediction,
        }
    }

    /// Create CollisionDetector from urdf_rs::Robot
    pub fn from_urdf_robot(urdf_robot: &urdf_rs::Robot, prediction: T) -> Self {
        Self::from_urdf_robot_with_base_dir(urdf_robot, None, prediction)
    }

    /// Create CollisionDetector from urdf_rs::Robot with base_dir support
    ///
    /// base_dir: mesh files are loaded from this dir if the path does not start with "package://"
    pub fn from_urdf_robot_with_base_dir(
        urdf_robot: &urdf_rs::Robot,
        base_dir: Option<&Path>,
        prediction: T,
    ) -> Self {
        let mut name_collision_model_map = HashMap::new();
        let link_joint_map = k::urdf::link_to_joint_map(urdf_robot);
        for l in &urdf_robot.links {
            let col_pose_vec = l
                .collision
                .iter()
                .filter_map(|collision| {
                    urdf_geometry_to_shape_handle(&collision.geometry, base_dir)
                        .map(|col| (col, k::urdf::isometry_from(&collision.origin)))
                })
                .collect::<Vec<_>>();
            debug!("name={}, ln={}", l.name, col_pose_vec.len());
            if !col_pose_vec.is_empty() {
                if let Some(joint_name) = link_joint_map.get(&l.name) {
                    name_collision_model_map.insert(joint_name.to_owned(), col_pose_vec);
                }
            }
        }
        CollisionDetector {
            name_collision_model_map,
            prediction,
        }
    }

    /// Create CollisionDetector from k::Chain
    pub fn from_robot(robot: &k::Chain<T>, prediction: T) -> Self {
        let mut name_collision_model_map = HashMap::new();
        for node in robot.iter() {
            let link = match node.link().clone() {
                Some(v) => v,
                None => break,
            };

            let col_pose_vec = link
                .collisions
                .iter()
                .filter_map(|c| {
                    k_link_geometry_to_shape_handle(&c.geometry).map(|col| (col, *c.origin()))
                })
                .collect::<Vec<_>>();

            debug!("name={}, ln={}", link.name, col_pose_vec.len());
            if !col_pose_vec.is_empty() {
                name_collision_model_map.insert(node.joint().name.to_owned(), col_pose_vec);
            }
        }
        CollisionDetector {
            name_collision_model_map,
            prediction,
        }
    }

    /// Detects collisions of a robot with an environmental object and returns the names of the link(joint) names
    ///
    /// robot: robot model
    /// target_shape: shape of the environmental object
    /// target_pose: pose of the environmental object
    pub fn detect_env<'a>(
        &'a self,
        robot: &'a k::Chain<T>,
        target_shape: &'a dyn Shape<T>,
        target_pose: &'a na::Isometry3<T>,
    ) -> EnvCollisionNames<'a, 'a, T> {
        robot.update_transforms();
        EnvCollisionNames::new(self, robot, target_shape, target_pose)
    }

    /// Detects self collisions and returns the names of the link(joint) names
    ///
    /// robot: robot model
    /// self_collision_pairs: pairs of the names of the link(joint)
    pub fn detect_self<'a>(
        &'a self,
        robot: &'a k::Chain<T>,
        self_collision_pairs: &'a [(String, String)],
    ) -> SelfCollisionPairs<'a, T> {
        robot.update_transforms();
        SelfCollisionPairs::new(self, robot, self_collision_pairs)
    }
}

#[cfg(test)]
mod tests {
    use na::{Isometry3, Vector3};
    use ncollide3d::shape::Cuboid;

    use super::*;

    #[test]
    fn test_environmental_collision_detection() {
        let urdf_robot = urdf_rs::read_file("sample.urdf").unwrap();
        let robot = k::Chain::<f32>::from(&urdf_robot);
        robot.set_joint_positions(&[0.0; 16]).unwrap();
        let detector = CollisionDetector::from_urdf_robot(&urdf_robot, 0.01);

        // This target is based on `obj2` in `obstacles.urdf`.
        let target = Cuboid::new(Vector3::new(0.2, 0.3, 0.1));
        let target_pose = Isometry3::new(Vector3::new(0.7, 0.0, 0.6), na::zero());

        assert!(detector
            .detect_env(&robot, &target, &target_pose)
            .next()
            .is_none());

        let angles = [
            -0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
        ];
        robot.set_joint_positions(&angles).unwrap();
        let names: Vec<String> = detector.detect_env(&robot, &target, &target_pose).collect();
        assert_eq!(
            names,
            vec![
                "l_wrist_yaw",
                "l_wrist_pitch",
                "l_gripper_linear1",
                "l_gripper_linear2"
            ]
        );

        let target_pose = Isometry3::new(Vector3::new(0.0, 0.0, 0.0), na::zero());
        let names: Vec<String> = detector.detect_env(&robot, &target, &target_pose).collect();
        assert_eq!(names, vec!["root"]);
    }

    #[test]
    fn test_self_collision_detection() {
        let urdf_robot = urdf_rs::read_file("sample.urdf").unwrap();
        let robot = k::Chain::<f32>::from(&urdf_robot);
        let detector = CollisionDetector::from_urdf_robot(&urdf_robot, 0.01);

        let collision_check_pairs = parse_colon_separated_pairs(&[
            "root:l_shoulder_roll".to_owned(),
            "root:l_elbow_pitch".to_owned(),
            "root:l_wrist_yaw".to_owned(),
            "root:l_wrist_pitch".to_owned(),
        ])
        .unwrap();
        let (correct_collisions, _) = collision_check_pairs.split_at(2);

        let angles = [0.0; 16];
        robot.set_joint_positions(&angles).unwrap();
        assert!(detector
            .detect_self(&robot, &collision_check_pairs)
            .next()
            .is_none());

        let angles = [
            -1.57, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
        ];
        robot.set_joint_positions(&angles).unwrap();
        let result: Vec<(String, String)> = detector
            .detect_self(&robot, &collision_check_pairs)
            .collect();
        assert_eq!(result, correct_collisions.to_vec());
    }
}

/// Convert urdf object into openrr_planner/ncollide3d object
pub trait FromUrdf {
    fn from_urdf_robot_with_base_dir(robot: &urdf_rs::Robot, path: Option<&Path>) -> Self;
    fn from_urdf_robot(robot: &urdf_rs::Robot) -> Self
    where
        Self: std::marker::Sized,
    {
        Self::from_urdf_robot_with_base_dir(robot, None::<&Path>)
    }
    fn from_urdf_file(path: impl AsRef<Path>) -> ::std::result::Result<Self, urdf_rs::UrdfError>
    where
        Self: ::std::marker::Sized,
    {
        Ok(Self::from_urdf_robot_with_base_dir(
            &urdf_rs::read_file(&path)?,
            path.as_ref().parent(),
        ))
    }
}

/// Parse args to get self collision pair
///
/// # Example
///
/// ```
/// let pairs = openrr_planner::collision::parse_colon_separated_pairs(&vec!["ab:cd".to_owned(), "ab:ef".to_owned()]).unwrap();
/// assert_eq!(pairs.len(), 2);
/// assert_eq!(pairs[0].0, "ab");
/// assert_eq!(pairs[0].1, "cd");
/// assert_eq!(pairs[1].0, "ab");
/// assert_eq!(pairs[1].1, "ef");
/// ```
pub fn parse_colon_separated_pairs(pair_strs: &[String]) -> Result<Vec<(String, String)>> {
    let mut pairs = Vec::new();
    for pair_str in pair_strs {
        let mut sp = pair_str.split(':');
        if let Some(p1) = sp.next() {
            if let Some(p2) = sp.next() {
                pairs.push((p1.to_owned(), p2.to_owned()));
            } else {
                return Err(Error::ParseError(pair_str.to_owned()));
            }
        } else {
            return Err(Error::ParseError(pair_str.to_owned()));
        }
    }
    Ok(pairs)
}

#[cfg(test)]
mod test {
    use super::parse_colon_separated_pairs;
    #[test]
    fn test_parse_colon_separated_pairs() {
        let pairs = parse_colon_separated_pairs(&["j0:j1".to_owned(), "j2:j0".to_owned()]).unwrap();
        assert_eq!(pairs.len(), 2);
        assert_eq!(pairs[0].0, "j0");
        assert_eq!(pairs[0].1, "j1");
        assert_eq!(pairs[1].0, "j2");
        assert_eq!(pairs[1].1, "j0");
    }
}

/// Create `ncollide::shape::Compound` from URDF file
///
/// The `<link>` elements are used as obstacles. set the origin/geometry of
/// `<visual>` and `<collision>`. You can skip `<inertia>`.
impl FromUrdf for Compound<f64> {
    fn from_urdf_robot_with_base_dir(
        urdf_obstacle: &urdf_rs::Robot,
        base_path: Option<&Path>,
    ) -> Self {
        let compound_data = urdf_obstacle
            .links
            .iter()
            .flat_map(|l| {
                l.collision
                    .iter()
                    .map(|collision| {
                        urdf_geometry_to_shape_handle(&collision.geometry, base_path)
                            .map(|col| (k::urdf::isometry_from(&collision.origin), col))
                    })
                    .collect::<Vec<_>>()
            })
            .flatten()
            .collect::<Vec<_>>();
        Compound::new(compound_data)
    }
}