1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
use num::One;
use num_complex::Complex;
use crate::base::dimension::{U1, U2};
use crate::base::storage::Storage;
use crate::base::{Matrix2, Scalar, Unit, Vector, Vector2};
use crate::geometry::{Rotation2, UnitComplex};
use simba::scalar::{RealField, SupersetOf};
use simba::simd::SimdRealField;
impl<T: SimdRealField> Default for UnitComplex<T>
where
T::Element: SimdRealField,
{
fn default() -> Self {
Self::identity()
}
}
/// # Identity
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// The unit complex number multiplicative identity.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let rot1 = UnitComplex::identity();
/// let rot2 = UnitComplex::new(1.7);
///
/// assert_eq!(rot1 * rot2, rot2);
/// assert_eq!(rot2 * rot1, rot2);
/// ```
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(Complex::new(T::one(), T::zero()))
}
}
/// # Construction from a 2D rotation angle
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// Builds the unit complex number corresponding to the rotation with the given angle.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitComplex, Point2};
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
#[inline]
pub fn new(angle: T) -> Self {
let (sin, cos) = angle.simd_sin_cos();
Self::from_cos_sin_unchecked(cos, sin)
}
/// Builds the unit complex number corresponding to the rotation with the angle.
///
/// Same as `Self::new(angle)`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitComplex, Point2};
/// let rot = UnitComplex::from_angle(f32::consts::FRAC_PI_2);
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
// TODO: deprecate this.
#[inline]
pub fn from_angle(angle: T) -> Self {
Self::new(angle)
}
/// Builds the unit complex number from the sinus and cosinus of the rotation angle.
///
/// The input values are not checked to actually be cosines and sine of the same value.
/// Is is generally preferable to use the `::new(angle)` constructor instead.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitComplex, Vector2, Point2};
/// let angle = f32::consts::FRAC_PI_2;
/// let rot = UnitComplex::from_cos_sin_unchecked(angle.cos(), angle.sin());
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
#[inline]
pub fn from_cos_sin_unchecked(cos: T, sin: T) -> Self {
Self::new_unchecked(Complex::new(cos, sin))
}
/// Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector.
///
/// This is generally used in the context of generic programming. Using
/// the `::new(angle)` method instead is more common.
#[inline]
pub fn from_scaled_axis<SB: Storage<T, U1>>(axisangle: Vector<T, U1, SB>) -> Self {
Self::from_angle(axisangle[0].clone())
}
}
/// # Construction from an existing 2D matrix or complex number
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let c = UnitComplex::new(1.0f64);
/// let c2 = c.cast::<f32>();
/// assert_eq!(c2, UnitComplex::new(1.0f32));
/// ```
pub fn cast<To: Scalar>(self) -> UnitComplex<To>
where
UnitComplex<To>: SupersetOf<Self>,
{
crate::convert(self)
}
/// The underlying complex number.
///
/// Same as `self.as_ref()`.
///
/// # Example
/// ```
/// # extern crate num_complex;
/// # use num_complex::Complex;
/// # use nalgebra::UnitComplex;
/// let angle = 1.78f32;
/// let rot = UnitComplex::new(angle);
/// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
/// ```
#[inline]
#[must_use]
pub fn complex(&self) -> &Complex<T> {
self.as_ref()
}
/// Creates a new unit complex number from a complex number.
///
/// The input complex number will be normalized.
#[inline]
pub fn from_complex(q: Complex<T>) -> Self {
Self::from_complex_and_get(q).0
}
/// Creates a new unit complex number from a complex number.
///
/// The input complex number will be normalized. Returns the norm of the complex number as well.
#[inline]
pub fn from_complex_and_get(q: Complex<T>) -> (Self, T) {
let norm = (q.im.clone() * q.im.clone() + q.re.clone() * q.re.clone()).simd_sqrt();
(Self::new_unchecked(q / norm.clone()), norm)
}
/// Builds the unit complex number from the corresponding 2D rotation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, UnitComplex};
/// let rot = Rotation2::new(1.7);
/// let complex = UnitComplex::from_rotation_matrix(&rot);
/// assert_eq!(complex, UnitComplex::new(1.7));
/// ```
// TODO: add UnitComplex::from(...) instead?
#[inline]
pub fn from_rotation_matrix(rotmat: &Rotation2<T>) -> Self {
Self::new_unchecked(Complex::new(rotmat[(0, 0)].clone(), rotmat[(1, 0)].clone()))
}
/// Builds a rotation from a basis assumed to be orthonormal.
///
/// In order to get a valid unit-quaternion, the input must be an
/// orthonormal basis, i.e., all vectors are normalized, and the are
/// all orthogonal to each other. These invariants are not checked
/// by this method.
pub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self {
let mat = Matrix2::from_columns(&basis[..]);
let rot = Rotation2::from_matrix_unchecked(mat);
Self::from_rotation_matrix(&rot)
}
/// Builds an unit complex by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix2<T>) -> Self
where
T: RealField,
{
Rotation2::from_matrix(m).into()
}
/// Builds an unit complex by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix2<T>, eps: T, max_iter: usize, guess: Self) -> Self
where
T: RealField,
{
let guess = Rotation2::from(guess);
Rotation2::from_matrix_eps(m, eps, max_iter, guess).into()
}
/// The unit complex number needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot1 = UnitComplex::new(0.1);
/// let rot2 = UnitComplex::new(1.7);
/// let rot_to = rot1.rotation_to(&rot2);
///
/// assert_relative_eq!(rot_to * rot1, rot2);
/// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
/// ```
#[inline]
#[must_use]
pub fn rotation_to(&self, other: &Self) -> Self {
other / self
}
/// Raise this unit complex number to a given floating power.
///
/// This returns the unit complex number that identifies a rotation angle equal to
/// `self.angle() × n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(0.78);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
/// ```
#[inline]
#[must_use]
pub fn powf(&self, n: T) -> Self {
Self::from_angle(self.angle() * n)
}
}
/// # Construction from two vectors
impl<T: SimdRealField> UnitComplex<T>
where
T::Element: SimdRealField,
{
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
/// direction.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector2, UnitComplex};
/// let a = Vector2::new(1.0, 2.0);
/// let b = Vector2::new(2.0, 1.0);
/// let rot = UnitComplex::rotation_between(&a, &b);
/// assert_relative_eq!(rot * a, b);
/// assert_relative_eq!(rot.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC>) -> Self
where
T: RealField,
SB: Storage<T, U2>,
SC: Storage<T, U2>,
{
Self::scaled_rotation_between(a, b, T::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector2, UnitComplex};
/// let a = Vector2::new(1.0, 2.0);
/// let b = Vector2::new(2.0, 1.0);
/// let rot2 = UnitComplex::scaled_rotation_between(&a, &b, 0.2);
/// let rot5 = UnitComplex::scaled_rotation_between(&a, &b, 0.5);
/// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U2, SB>,
b: &Vector<T, U2, SC>,
s: T,
) -> Self
where
T: RealField,
SB: Storage<T, U2>,
SC: Storage<T, U2>,
{
// TODO: code duplication with Rotation.
if let (Some(na), Some(nb)) = (
Unit::try_new(a.clone_owned(), T::zero()),
Unit::try_new(b.clone_owned(), T::zero()),
) {
Self::scaled_rotation_between_axis(&na, &nb, s)
} else {
Self::identity()
}
}
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
/// direction.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Vector2, UnitComplex};
/// let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
/// let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
/// let rot = UnitComplex::rotation_between_axis(&a, &b);
/// assert_relative_eq!(rot * a, b);
/// assert_relative_eq!(rot.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<T, U2, SB>>,
b: &Unit<Vector<T, U2, SC>>,
) -> Self
where
SB: Storage<T, U2>,
SC: Storage<T, U2>,
{
Self::scaled_rotation_between_axis(a, b, T::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Vector2, UnitComplex};
/// let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
/// let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
/// let rot2 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.2);
/// let rot5 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.5);
/// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<T, U2, SB>>,
nb: &Unit<Vector<T, U2, SC>>,
s: T,
) -> Self
where
SB: Storage<T, U2>,
SC: Storage<T, U2>,
{
let sang = na.perp(nb);
let cang = na.dot(nb);
Self::from_angle(sang.simd_atan2(cang) * s)
}
}
impl<T: SimdRealField> One for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
#[cfg(feature = "rand")]
impl<T: SimdRealField> Distribution<UnitComplex<T>> for Standard
where
T::Element: SimdRealField,
rand_distr::UnitCircle: Distribution<[T; 2]>,
{
/// Generate a uniformly distributed random `UnitComplex`.
#[inline]
fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> UnitComplex<T> {
let x = rng.sample(rand_distr::UnitCircle);
UnitComplex::new_unchecked(Complex::new(x[0].clone(), x[1].clone()))
}
}
#[cfg(feature = "arbitrary")]
impl<T: SimdRealField + Arbitrary> Arbitrary for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
UnitComplex::from_angle(T::arbitrary(g))
}
}