nalgebra/geometry/unit_complex_construction.rs
1#[cfg(feature = "arbitrary")]
2use quickcheck::{Arbitrary, Gen};
3
4#[cfg(feature = "rand-no-std")]
5use rand::{
6 distributions::{Distribution, Standard},
7 Rng,
8};
9
10use num::One;
11use num_complex::Complex;
12
13use crate::base::dimension::{U1, U2};
14use crate::base::storage::Storage;
15use crate::base::{Matrix2, Scalar, Unit, Vector, Vector2};
16use crate::geometry::{Rotation2, UnitComplex};
17use simba::scalar::{RealField, SupersetOf};
18use simba::simd::SimdRealField;
19
20impl<T: SimdRealField> Default for UnitComplex<T>
21where
22 T::Element: SimdRealField,
23{
24 fn default() -> Self {
25 Self::identity()
26 }
27}
28
29/// # Identity
30impl<T: SimdRealField> UnitComplex<T>
31where
32 T::Element: SimdRealField,
33{
34 /// The unit complex number multiplicative identity.
35 ///
36 /// # Example
37 /// ```
38 /// # use nalgebra::UnitComplex;
39 /// let rot1 = UnitComplex::identity();
40 /// let rot2 = UnitComplex::new(1.7);
41 ///
42 /// assert_eq!(rot1 * rot2, rot2);
43 /// assert_eq!(rot2 * rot1, rot2);
44 /// ```
45 #[inline]
46 pub fn identity() -> Self {
47 Self::new_unchecked(Complex::new(T::one(), T::zero()))
48 }
49}
50
51/// # Construction from a 2D rotation angle
52impl<T: SimdRealField> UnitComplex<T>
53where
54 T::Element: SimdRealField,
55{
56 /// Builds the unit complex number corresponding to the rotation with the given angle.
57 ///
58 /// # Example
59 ///
60 /// ```
61 /// # #[macro_use] extern crate approx;
62 /// # use std::f32;
63 /// # use nalgebra::{UnitComplex, Point2};
64 /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
65 ///
66 /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
67 /// ```
68 #[inline]
69 pub fn new(angle: T) -> Self {
70 let (sin, cos) = angle.simd_sin_cos();
71 Self::from_cos_sin_unchecked(cos, sin)
72 }
73
74 /// Builds the unit complex number corresponding to the rotation with the angle.
75 ///
76 /// Same as `Self::new(angle)`.
77 ///
78 /// # Example
79 ///
80 /// ```
81 /// # #[macro_use] extern crate approx;
82 /// # use std::f32;
83 /// # use nalgebra::{UnitComplex, Point2};
84 /// let rot = UnitComplex::from_angle(f32::consts::FRAC_PI_2);
85 ///
86 /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
87 /// ```
88 // TODO: deprecate this.
89 #[inline]
90 pub fn from_angle(angle: T) -> Self {
91 Self::new(angle)
92 }
93
94 /// Builds the unit complex number from the sinus and cosinus of the rotation angle.
95 ///
96 /// The input values are not checked to actually be cosines and sine of the same value.
97 /// Is is generally preferable to use the `::new(angle)` constructor instead.
98 ///
99 /// # Example
100 ///
101 /// ```
102 /// # #[macro_use] extern crate approx;
103 /// # use std::f32;
104 /// # use nalgebra::{UnitComplex, Vector2, Point2};
105 /// let angle = f32::consts::FRAC_PI_2;
106 /// let rot = UnitComplex::from_cos_sin_unchecked(angle.cos(), angle.sin());
107 ///
108 /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
109 /// ```
110 #[inline]
111 pub fn from_cos_sin_unchecked(cos: T, sin: T) -> Self {
112 Self::new_unchecked(Complex::new(cos, sin))
113 }
114
115 /// Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector.
116 ///
117 /// This is generally used in the context of generic programming. Using
118 /// the `::new(angle)` method instead is more common.
119 #[inline]
120 pub fn from_scaled_axis<SB: Storage<T, U1>>(axisangle: Vector<T, U1, SB>) -> Self {
121 Self::from_angle(axisangle[0].clone())
122 }
123}
124
125/// # Construction from an existing 2D matrix or complex number
126impl<T: SimdRealField> UnitComplex<T>
127where
128 T::Element: SimdRealField,
129{
130 /// Cast the components of `self` to another type.
131 ///
132 /// # Example
133 /// ```
134 /// # use nalgebra::UnitComplex;
135 /// let c = UnitComplex::new(1.0f64);
136 /// let c2 = c.cast::<f32>();
137 /// assert_eq!(c2, UnitComplex::new(1.0f32));
138 /// ```
139 pub fn cast<To: Scalar>(self) -> UnitComplex<To>
140 where
141 UnitComplex<To>: SupersetOf<Self>,
142 {
143 crate::convert(self)
144 }
145
146 /// The underlying complex number.
147 ///
148 /// Same as `self.as_ref()`.
149 ///
150 /// # Example
151 /// ```
152 /// # extern crate num_complex;
153 /// # use num_complex::Complex;
154 /// # use nalgebra::UnitComplex;
155 /// let angle = 1.78f32;
156 /// let rot = UnitComplex::new(angle);
157 /// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
158 /// ```
159 #[inline]
160 #[must_use]
161 pub fn complex(&self) -> &Complex<T> {
162 self.as_ref()
163 }
164
165 /// Creates a new unit complex number from a complex number.
166 ///
167 /// The input complex number will be normalized.
168 #[inline]
169 pub fn from_complex(q: Complex<T>) -> Self {
170 Self::from_complex_and_get(q).0
171 }
172
173 /// Creates a new unit complex number from a complex number.
174 ///
175 /// The input complex number will be normalized. Returns the norm of the complex number as well.
176 #[inline]
177 pub fn from_complex_and_get(q: Complex<T>) -> (Self, T) {
178 let norm = (q.im.clone() * q.im.clone() + q.re.clone() * q.re.clone()).simd_sqrt();
179 (Self::new_unchecked(q / norm.clone()), norm)
180 }
181
182 /// Builds the unit complex number from the corresponding 2D rotation matrix.
183 ///
184 /// # Example
185 /// ```
186 /// # use nalgebra::{Rotation2, UnitComplex};
187 /// let rot = Rotation2::new(1.7);
188 /// let complex = UnitComplex::from_rotation_matrix(&rot);
189 /// assert_eq!(complex, UnitComplex::new(1.7));
190 /// ```
191 // TODO: add UnitComplex::from(...) instead?
192 #[inline]
193 pub fn from_rotation_matrix(rotmat: &Rotation2<T>) -> Self {
194 Self::new_unchecked(Complex::new(rotmat[(0, 0)].clone(), rotmat[(1, 0)].clone()))
195 }
196
197 /// Builds a rotation from a basis assumed to be orthonormal.
198 ///
199 /// In order to get a valid unit-quaternion, the input must be an
200 /// orthonormal basis, i.e., all vectors are normalized, and the are
201 /// all orthogonal to each other. These invariants are not checked
202 /// by this method.
203 pub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self {
204 let mat = Matrix2::from_columns(&basis[..]);
205 let rot = Rotation2::from_matrix_unchecked(mat);
206 Self::from_rotation_matrix(&rot)
207 }
208
209 /// Builds an unit complex by extracting the rotation part of the given transformation `m`.
210 ///
211 /// This is an iterative method. See `.from_matrix_eps` to provide mover
212 /// convergence parameters and starting solution.
213 /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
214 pub fn from_matrix(m: &Matrix2<T>) -> Self
215 where
216 T: RealField,
217 {
218 Rotation2::from_matrix(m).into()
219 }
220
221 /// Builds an unit complex by extracting the rotation part of the given transformation `m`.
222 ///
223 /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
224 ///
225 /// # Parameters
226 ///
227 /// * `m`: the matrix from which the rotational part is to be extracted.
228 /// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
229 /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
230 /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
231 /// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other
232 /// guesses come to mind.
233 pub fn from_matrix_eps(m: &Matrix2<T>, eps: T, max_iter: usize, guess: Self) -> Self
234 where
235 T: RealField,
236 {
237 let guess = Rotation2::from(guess);
238 Rotation2::from_matrix_eps(m, eps, max_iter, guess).into()
239 }
240
241 /// The unit complex number needed to make `self` and `other` coincide.
242 ///
243 /// The result is such that: `self.rotation_to(other) * self == other`.
244 ///
245 /// # Example
246 /// ```
247 /// # #[macro_use] extern crate approx;
248 /// # use nalgebra::UnitComplex;
249 /// let rot1 = UnitComplex::new(0.1);
250 /// let rot2 = UnitComplex::new(1.7);
251 /// let rot_to = rot1.rotation_to(&rot2);
252 ///
253 /// assert_relative_eq!(rot_to * rot1, rot2);
254 /// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
255 /// ```
256 #[inline]
257 #[must_use]
258 pub fn rotation_to(&self, other: &Self) -> Self {
259 other / self
260 }
261
262 /// Raise this unit complex number to a given floating power.
263 ///
264 /// This returns the unit complex number that identifies a rotation angle equal to
265 /// `self.angle() × n`.
266 ///
267 /// # Example
268 /// ```
269 /// # #[macro_use] extern crate approx;
270 /// # use nalgebra::UnitComplex;
271 /// let rot = UnitComplex::new(0.78);
272 /// let pow = rot.powf(2.0);
273 /// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
274 /// ```
275 #[inline]
276 #[must_use]
277 pub fn powf(&self, n: T) -> Self {
278 Self::from_angle(self.angle() * n)
279 }
280}
281
282/// # Construction from two vectors
283impl<T: SimdRealField> UnitComplex<T>
284where
285 T::Element: SimdRealField,
286{
287 /// The unit complex needed to make `a` and `b` be collinear and point toward the same
288 /// direction.
289 ///
290 /// # Example
291 /// ```
292 /// # #[macro_use] extern crate approx;
293 /// # use nalgebra::{Vector2, UnitComplex};
294 /// let a = Vector2::new(1.0, 2.0);
295 /// let b = Vector2::new(2.0, 1.0);
296 /// let rot = UnitComplex::rotation_between(&a, &b);
297 /// assert_relative_eq!(rot * a, b);
298 /// assert_relative_eq!(rot.inverse() * b, a);
299 /// ```
300 #[inline]
301 pub fn rotation_between<SB, SC>(a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC>) -> Self
302 where
303 T: RealField,
304 SB: Storage<T, U2>,
305 SC: Storage<T, U2>,
306 {
307 Self::scaled_rotation_between(a, b, T::one())
308 }
309
310 /// The smallest rotation needed to make `a` and `b` collinear and point toward the same
311 /// direction, raised to the power `s`.
312 ///
313 /// # Example
314 /// ```
315 /// # #[macro_use] extern crate approx;
316 /// # use nalgebra::{Vector2, UnitComplex};
317 /// let a = Vector2::new(1.0, 2.0);
318 /// let b = Vector2::new(2.0, 1.0);
319 /// let rot2 = UnitComplex::scaled_rotation_between(&a, &b, 0.2);
320 /// let rot5 = UnitComplex::scaled_rotation_between(&a, &b, 0.5);
321 /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
322 /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
323 /// ```
324 #[inline]
325 pub fn scaled_rotation_between<SB, SC>(
326 a: &Vector<T, U2, SB>,
327 b: &Vector<T, U2, SC>,
328 s: T,
329 ) -> Self
330 where
331 T: RealField,
332 SB: Storage<T, U2>,
333 SC: Storage<T, U2>,
334 {
335 // TODO: code duplication with Rotation.
336 if let (Some(na), Some(nb)) = (
337 Unit::try_new(a.clone_owned(), T::zero()),
338 Unit::try_new(b.clone_owned(), T::zero()),
339 ) {
340 Self::scaled_rotation_between_axis(&na, &nb, s)
341 } else {
342 Self::identity()
343 }
344 }
345
346 /// The unit complex needed to make `a` and `b` be collinear and point toward the same
347 /// direction.
348 ///
349 /// # Example
350 /// ```
351 /// # #[macro_use] extern crate approx;
352 /// # use nalgebra::{Unit, Vector2, UnitComplex};
353 /// let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
354 /// let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
355 /// let rot = UnitComplex::rotation_between_axis(&a, &b);
356 /// assert_relative_eq!(rot * a, b);
357 /// assert_relative_eq!(rot.inverse() * b, a);
358 /// ```
359 #[inline]
360 pub fn rotation_between_axis<SB, SC>(
361 a: &Unit<Vector<T, U2, SB>>,
362 b: &Unit<Vector<T, U2, SC>>,
363 ) -> Self
364 where
365 SB: Storage<T, U2>,
366 SC: Storage<T, U2>,
367 {
368 Self::scaled_rotation_between_axis(a, b, T::one())
369 }
370
371 /// The smallest rotation needed to make `a` and `b` collinear and point toward the same
372 /// direction, raised to the power `s`.
373 ///
374 /// # Example
375 /// ```
376 /// # #[macro_use] extern crate approx;
377 /// # use nalgebra::{Unit, Vector2, UnitComplex};
378 /// let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
379 /// let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
380 /// let rot2 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.2);
381 /// let rot5 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.5);
382 /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
383 /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
384 /// ```
385 #[inline]
386 pub fn scaled_rotation_between_axis<SB, SC>(
387 na: &Unit<Vector<T, U2, SB>>,
388 nb: &Unit<Vector<T, U2, SC>>,
389 s: T,
390 ) -> Self
391 where
392 SB: Storage<T, U2>,
393 SC: Storage<T, U2>,
394 {
395 let sang = na.perp(nb);
396 let cang = na.dot(nb);
397
398 Self::from_angle(sang.simd_atan2(cang) * s)
399 }
400}
401
402impl<T: SimdRealField> One for UnitComplex<T>
403where
404 T::Element: SimdRealField,
405{
406 #[inline]
407 fn one() -> Self {
408 Self::identity()
409 }
410}
411
412#[cfg(feature = "rand")]
413impl<T: SimdRealField> Distribution<UnitComplex<T>> for Standard
414where
415 T::Element: SimdRealField,
416 rand_distr::UnitCircle: Distribution<[T; 2]>,
417{
418 /// Generate a uniformly distributed random `UnitComplex`.
419 #[inline]
420 fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> UnitComplex<T> {
421 let x = rng.sample(rand_distr::UnitCircle);
422 UnitComplex::new_unchecked(Complex::new(x[0].clone(), x[1].clone()))
423 }
424}
425
426#[cfg(feature = "arbitrary")]
427impl<T: SimdRealField + Arbitrary> Arbitrary for UnitComplex<T>
428where
429 T::Element: SimdRealField,
430{
431 #[inline]
432 fn arbitrary(g: &mut Gen) -> Self {
433 UnitComplex::from_angle(T::arbitrary(g))
434 }
435}