symphonia_bundle_mp3/layer3/bitstream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use symphonia_core::errors::{decode_error, Result};
use symphonia_core::io::ReadBitsLtr;
use crate::common::{ChannelMode, FrameHeader};
use super::{common::*, FrameData, Granule, GranuleChannel};
/// Pairs of bit lengths for MPEG version 1 scale factors. For MPEG version 1, there are two
/// possible bit lengths for scale factors: slen1 and slen2. The first N of bands have scale factors
/// of bit length slen1, while the remaining bands have length slen2. The value of the switch point,
/// N, is determined by block type.
///
/// This table is indexed by scalefac_compress.
const SCALE_FACTOR_SLEN: [(u32, u32); 16] = [
(0, 0),
(0, 1),
(0, 2),
(0, 3),
(3, 0),
(1, 1),
(1, 2),
(1, 3),
(2, 1),
(2, 2),
(2, 3),
(3, 1),
(3, 2),
(3, 3),
(4, 2),
(4, 3),
];
/// For MPEG version 2, each scale factor band has a different scale factor. The length in bits of
/// a scale factor (slen) can be one of 4 values. The values in this table indicate the number of
/// scale factors that have length slen[0..4]. Slen[0..4] is calculated from scalefac_compress.
///
/// This table is indexed by channel_mode, scalefac_compress, and block_type.
const SCALE_FACTOR_MPEG2_NSFB: [[[usize; 4]; 3]; 6] = [
// Intensity stereo channel modes.
[[7, 7, 7, 0], [12, 12, 12, 0], [6, 15, 12, 0]],
[[6, 6, 6, 3], [12, 9, 9, 6], [6, 12, 9, 6]],
[[8, 8, 5, 0], [15, 12, 9, 0], [6, 18, 9, 0]],
// Other channel modes.
[[6, 5, 5, 5], [9, 9, 9, 9], [6, 9, 9, 9]],
[[6, 5, 7, 3], [9, 9, 12, 6], [6, 9, 12, 6]],
[[11, 10, 0, 0], [18, 18, 0, 0], [15, 18, 0, 0]],
];
/// Reads the side_info for a single channel in a granule from a `BitStream`.
fn read_granule_channel_side_info<B: ReadBitsLtr>(
bs: &mut B,
channel: &mut GranuleChannel,
header: &FrameHeader,
) -> Result<()> {
channel.part2_3_length = bs.read_bits_leq32(12)? as u16;
channel.big_values = bs.read_bits_leq32(9)? as u16;
// The maximum number of samples in a granule is 576. One big_value decodes to 2 samples,
// therefore there can be no more than 288 (576/2) big_values.
if channel.big_values > 288 {
return decode_error("mpa: granule big_values > 288");
}
channel.global_gain = bs.read_bits_leq32(8)? as u8;
channel.scalefac_compress =
if header.is_mpeg1() { bs.read_bits_leq32(4) } else { bs.read_bits_leq32(9) }? as u16;
let window_switching = bs.read_bool()?;
if window_switching {
let block_type_enc = bs.read_bits_leq32(2)?;
let is_mixed = bs.read_bool()?;
channel.block_type = match block_type_enc {
// Only transitional Long blocks (Start, End) are allowed with window switching.
0b00 => return decode_error("mpa: invalid block_type"),
0b01 => BlockType::Start,
0b10 => BlockType::Short { is_mixed },
0b11 => BlockType::End,
_ => unreachable!(),
};
// When window switching is used, there are only two regions, therefore there are only
// two table selectors.
for i in 0..2 {
channel.table_select[i] = bs.read_bits_leq32(5)? as u8;
}
for i in 0..3 {
channel.subblock_gain[i] = bs.read_bits_leq32(3)? as u8;
}
// When using window switching, the boundaries of region[0..3] are set implicitly according
// to the MPEG version and block type. Below, the boundaries to set as per the applicable
// standard.
//
// If MPEG version 2.5 specifically...
if header.is_mpeg2p5() {
// For MPEG2.5, the number of scale-factor bands in region0 depends on the block type.
// The standard indicates these values as 1 less than the actual value, therefore 1 is
// added here to both values.
let region0_count = match channel.block_type {
BlockType::Short { is_mixed: false } => 5 + 1,
_ => 7 + 1,
};
channel.region1_start = SFB_LONG_BANDS[header.sample_rate_idx][region0_count];
}
// If MPEG version 1, OR the block type is Short...
else if header.is_mpeg1() || block_type_enc == 0b10 {
// For MPEG1 with transitional LONG blocks, the first 8 LONG scale-factor bands are used
// for region0. These bands are always [4, 4, 4, 4, 4, 4, 6, 6, ...] regardless of
// sample rate. These bands sum to 36 samples.
//
// For MPEG1 with SHORT blocks, the first 9 SHORT scale-factor bands are used for
// region0. These band are always [4, 4, 4, 4, 4, 4, 4, 4, 4, ...] regardless of sample
// rate. These bands also sum to 36 samples.
//
// Finally, for MPEG2 with SHORT blocks, the first 9 short scale-factor bands are used
// for region0. These bands are also always [4, 4, 4, 4, 4, 4, 4, 4, 4, ...] regardless
// of sample and thus sum to 36 samples.
//
// In all cases, the region0_count is 36.
//
// TODO: This is not accurate for MPEG2.5 at 8kHz.
channel.region1_start = 36;
}
// If MPEG version 2 AND the block type is not Short...
else {
// For MPEG2 and transitional LONG blocks, the first 8 LONG scale-factor bands are used
// for region0. These bands are always [6, 6, 6, 6, 6, 6, 8, 10, ...] regardless of
// sample rate. These bands sum to 54.
channel.region1_start = 54;
}
// The second region, region1, spans the remaining samples. Therefore the third region,
// region2, isn't used.
channel.region2_start = 576;
}
else {
// If window switching is not used, the block type is always Long.
channel.block_type = BlockType::Long;
for i in 0..3 {
channel.table_select[i] = bs.read_bits_leq32(5)? as u8;
}
// When window switching is not used, only LONG scale-factor bands are used for each region.
// The number of bands in region0 and region1 are defined in side_info. The stored value is
// 1 less than the actual value.
let region0_count = bs.read_bits_leq32(4)? as usize + 1;
let region0_1_count = bs.read_bits_leq32(3)? as usize + region0_count + 1;
channel.region1_start = SFB_LONG_BANDS[header.sample_rate_idx][region0_count];
// The count in region0_1_count may exceed the last band (22) in the LONG bands table.
// Protect against this.
channel.region2_start = match region0_1_count {
0..=22 => SFB_LONG_BANDS[header.sample_rate_idx][region0_1_count],
_ => 576,
};
}
// For MPEG2, preflag is determined implicitly when reading the scale factors.
channel.preflag = if header.is_mpeg1() { bs.read_bool()? } else { false };
channel.scalefac_scale = bs.read_bool()?;
channel.count1table_select = bs.read_bit()? as u8;
Ok(())
}
/// Reads the side_info for all channels in a granule from a `BitStream`.
fn read_granule_side_info<B: ReadBitsLtr>(
bs: &mut B,
granule: &mut Granule,
header: &FrameHeader,
) -> Result<()> {
// Read the side_info for each channel in the granule.
for channel in &mut granule.channels[..header.channel_mode.count()] {
read_granule_channel_side_info(bs, channel, header)?;
}
Ok(())
}
/// Reads the side_info of a MPEG audio frame from a `BitStream` into `FrameData`.
pub(super) fn read_side_info<B: ReadBitsLtr>(
bs: &mut B,
header: &FrameHeader,
frame_data: &mut FrameData,
) -> Result<usize> {
// For MPEG version 1...
if header.is_mpeg1() {
// First 9 bits is main_data_begin.
frame_data.main_data_begin = bs.read_bits_leq32(9)? as u16;
// Next 3 (>1 channel) or 5 (1 channel) bits are private and should be ignored.
match header.channel_mode {
ChannelMode::Mono => bs.ignore_bits(5)?,
_ => bs.ignore_bits(3)?,
};
// Next four (or 8, if more than one channel) are the SCFSI bits.
for scfsi in &mut frame_data.scfsi[..header.n_channels()] {
for band in scfsi.iter_mut() {
*band = bs.read_bool()?;
}
}
}
// For MPEG version 2...
else {
// First 8 bits is main_data_begin.
frame_data.main_data_begin = bs.read_bits_leq32(8)? as u16;
// Next 1 (1 channel) or 2 (>1 channel) bits are private and should be ignored.
match header.channel_mode {
ChannelMode::Mono => bs.ignore_bits(1)?,
_ => bs.ignore_bits(2)?,
}
}
// Read the side_info for each granule.
for granule in frame_data.granules_mut(header.version) {
read_granule_side_info(bs, granule, header)?;
}
Ok(header.side_info_len())
}
/// Reads the scale factors for a single channel in a granule in a MPEG version 1 audio frame.
pub(super) fn read_scale_factors_mpeg1<B: ReadBitsLtr>(
bs: &mut B,
gr: usize,
ch: usize,
frame_data: &mut FrameData,
) -> Result<u32> {
let mut bits_read = 0;
let channel = &mut frame_data.granules[gr].channels[ch];
// For MPEG1, scalefac_compress is a 4-bit index into a scale factor bit length lookup table.
let (slen1, slen2) = SCALE_FACTOR_SLEN[channel.scalefac_compress as usize];
// Short or Mixed windows...
if let BlockType::Short { is_mixed } = channel.block_type {
// If the block is mixed, there are three total scale factor partitions. The first is a long
// scale factor partition for bands 0..8 (scalefacs[0..8] with each scale factor being slen1
// bits long. Following this is a short scale factor partition covering bands 8..11 with a
// window of 3 (scalefacs[8..17]) and each scale factoring being slen1 bits long.
//
// If a block is not mixed, then there are a total of two scale factor partitions. The first
// is a short scale factor partition for bands 0..6 with a window length of 3
// (scalefacs[0..18]) and each scale factor being slen1 bits long.
let n_sfb = if is_mixed { 8 + 3 * 3 } else { 6 * 3 };
if slen1 > 0 {
for sfb in 0..n_sfb {
channel.scalefacs[sfb] = bs.read_bits_leq32(slen1)? as u8;
}
bits_read += n_sfb * slen1 as usize;
}
// The final scale factor partition is always a a short scale factor window. It covers bands
// 11..17 (scalefacs[17..35]) if the block is mixed, or bands 6..12 (scalefacs[18..36]) if
// not. Each band has a window of 3 with each scale factor being slen2 bits long.
if slen2 > 0 {
for sfb in n_sfb..(n_sfb + (6 * 3)) {
channel.scalefacs[sfb] = bs.read_bits_leq32(slen2)? as u8;
}
bits_read += 6 * 3 * slen2 as usize;
}
}
// Normal (long, start, end) windows...
else {
// For normal windows there are 21 scale factor bands. These bands are divivided into four
// band ranges. Scale factors in the first two band ranges: [0..6], [6..11], have scale
// factors that are slen1 bits long, while the last two band ranges: [11..16], [16..21] have
// scale factors that are slen2 bits long.
const SCALE_FACTOR_BANDS: [(usize, usize); 4] = [(0, 6), (6, 11), (11, 16), (16, 21)];
for (i, (start, end)) in SCALE_FACTOR_BANDS.iter().enumerate() {
let slen = if i < 2 { slen1 } else { slen2 };
// If this is the second granule, and the scale factor selection information for this
// channel indicates that the scale factors should be copied from the first granule,
// do so.
if gr > 0 && frame_data.scfsi[ch][i] {
let (granule0, granule1) = frame_data.granules.split_first_mut().unwrap();
granule1[0].channels[ch].scalefacs[*start..*end]
.copy_from_slice(&granule0.channels[ch].scalefacs[*start..*end]);
}
// Otherwise, read the scale factors from the bitstream. Since scale factors are already
// zeroed out by default, don't do anything if slen is 0.
else if slen > 0 {
for sfb in *start..*end {
frame_data.granules[gr].channels[ch].scalefacs[sfb] =
bs.read_bits_leq32(slen)? as u8;
}
bits_read += slen as usize * (end - start);
}
}
}
Ok(bits_read as u32)
}
/// Reads the scale factors for a single channel in a granule in a MPEG version 2 audio frame.
pub(super) fn read_scale_factors_mpeg2<B: ReadBitsLtr>(
bs: &mut B,
is_intensity_stereo: bool,
channel: &mut GranuleChannel,
) -> Result<u32> {
let mut bits_read = 0;
let block_index = match channel.block_type {
BlockType::Short { is_mixed: true } => 2,
BlockType::Short { is_mixed: false } => 1,
_ => 0,
};
let (slen_table, nsfb_table) = if is_intensity_stereo {
// The actual value of scalefac_compress is a 9-bit unsigned integer (0..512) for MPEG2. A
// left shift reduces it to an 8-bit value (0..256).
let sfc = u32::from(channel.scalefac_compress) >> 1;
match sfc {
0..=179 => (
[
(sfc / 36), //
(sfc % 36) / 6, //
(sfc % 36) % 6, //
0, //
],
&SCALE_FACTOR_MPEG2_NSFB[0][block_index],
),
180..=243 => (
[
((sfc - 180) % 64) >> 4, //
((sfc - 180) % 16) >> 2, //
((sfc - 180) % 4), //
0, //
],
&SCALE_FACTOR_MPEG2_NSFB[1][block_index],
),
244..=255 => (
[
(sfc - 244) / 3, //
(sfc - 244) % 3, //
0, //
0, //
],
&SCALE_FACTOR_MPEG2_NSFB[2][block_index],
),
_ => unreachable!(),
}
}
else {
// The actual value of scalefac_compress is a 9-bit unsigned integer (0..512) for MPEG2.
let sfc = u32::from(channel.scalefac_compress);
// Preflag is set only if scalefac_compress >= 500 and this is not the intensity stereo
// channel. See ISO/IEC 13818-3 section 2.4.3.4.
channel.preflag = sfc >= 500;
match sfc {
0..=399 => (
[
(sfc >> 4) / 5, //
(sfc >> 4) % 5, //
(sfc % 16) >> 2, //
(sfc % 4), //
],
&SCALE_FACTOR_MPEG2_NSFB[3][block_index],
),
400..=499 => (
[
((sfc - 400) >> 2) / 5, //
((sfc - 400) >> 2) % 5, //
(sfc - 400) % 4, //
0, //
],
&SCALE_FACTOR_MPEG2_NSFB[4][block_index],
),
500..=512 => (
[
(sfc - 500) / 3, //
(sfc - 500) % 3, //
0, //
0, //
],
&SCALE_FACTOR_MPEG2_NSFB[5][block_index],
),
_ => unreachable!(),
}
};
let mut start = 0;
for (&slen, &n_sfb) in slen_table.iter().zip(nsfb_table.iter()) {
// If slen > 0, read n_sfb scale factors with each scale factor being slen bits long. If
// slen == 0, but n_sfb > 0, then the those scale factors should be set to 0. Since all
// scalefacs are preinitialized to 0, this process may be skipped.
if slen > 0 {
for sfb in start..(start + n_sfb) {
channel.scalefacs[sfb] = bs.read_bits_leq32(slen)? as u8;
}
bits_read += slen * n_sfb as u32;
}
start += n_sfb;
}
Ok(bits_read)
}