nalgebra/linalg/
full_piv_lu.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};

use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, OMatrix};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimMin, DimMinimum};
use crate::storage::{Storage, StorageMut};
use simba::scalar::ComplexField;

use crate::linalg::lu;
use crate::linalg::PermutationSequence;

/// LU decomposition with full row and column pivoting.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(serialize = "DefaultAllocator: Allocator<T, R, C> +
                           Allocator<(usize, usize), DimMinimum<R, C>>,
         OMatrix<T, R, C>: Serialize,
         PermutationSequence<DimMinimum<R, C>>: Serialize"))
)]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(deserialize = "DefaultAllocator: Allocator<T, R, C> +
                           Allocator<(usize, usize), DimMinimum<R, C>>,
         OMatrix<T, R, C>: Deserialize<'de>,
         PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct FullPivLU<T: ComplexField, R: DimMin<C>, C: Dim>
where
    DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
{
    lu: OMatrix<T, R, C>,
    p: PermutationSequence<DimMinimum<R, C>>,
    q: PermutationSequence<DimMinimum<R, C>>,
}

impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for FullPivLU<T, R, C>
where
    DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
    OMatrix<T, R, C>: Copy,
    PermutationSequence<DimMinimum<R, C>>: Copy,
{
}

impl<T: ComplexField, R: DimMin<C>, C: Dim> FullPivLU<T, R, C>
where
    DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
{
    /// Computes the LU decomposition with full pivoting of `matrix`.
    ///
    /// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
    pub fn new(mut matrix: OMatrix<T, R, C>) -> Self {
        let (nrows, ncols) = matrix.shape_generic();
        let min_nrows_ncols = nrows.min(ncols);

        let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
        let mut q = PermutationSequence::identity_generic(min_nrows_ncols);

        if min_nrows_ncols.value() == 0 {
            return Self { lu: matrix, p, q };
        }

        for i in 0..min_nrows_ncols.value() {
            let piv = matrix.slice_range(i.., i..).icamax_full();
            let row_piv = piv.0 + i;
            let col_piv = piv.1 + i;
            let diag = matrix[(row_piv, col_piv)].clone();

            if diag.is_zero() {
                // The remaining of the matrix is zero.
                break;
            }

            matrix.swap_columns(i, col_piv);
            q.append_permutation(i, col_piv);

            if row_piv != i {
                p.append_permutation(i, row_piv);
                matrix.columns_range_mut(..i).swap_rows(i, row_piv);
                lu::gauss_step_swap(&mut matrix, diag, i, row_piv);
            } else {
                lu::gauss_step(&mut matrix, diag, i);
            }
        }

        Self { lu: matrix, p, q }
    }

    #[doc(hidden)]
    pub fn lu_internal(&self) -> &OMatrix<T, R, C> {
        &self.lu
    }

    /// The lower triangular matrix of this decomposition.
    #[inline]
    #[must_use]
    pub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>
    where
        DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>,
    {
        let (nrows, ncols) = self.lu.shape_generic();
        let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
        m.fill_upper_triangle(T::zero(), 1);
        m.fill_diagonal(T::one());
        m
    }

    /// The upper triangular matrix of this decomposition.
    #[inline]
    #[must_use]
    pub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>
    where
        DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>,
    {
        let (nrows, ncols) = self.lu.shape_generic();
        self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
    }

    /// The row permutations of this decomposition.
    #[inline]
    #[must_use]
    pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
        &self.p
    }

    /// The column permutations of this decomposition.
    #[inline]
    #[must_use]
    pub fn q(&self) -> &PermutationSequence<DimMinimum<R, C>> {
        &self.q
    }

    /// The two matrices of this decomposition and the row and column permutations: `(P, L, U, Q)`.
    #[inline]
    pub fn unpack(
        self,
    ) -> (
        PermutationSequence<DimMinimum<R, C>>,
        OMatrix<T, R, DimMinimum<R, C>>,
        OMatrix<T, DimMinimum<R, C>, C>,
        PermutationSequence<DimMinimum<R, C>>,
    )
    where
        DefaultAllocator: Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>, C>,
    {
        // Use reallocation for either l or u.
        let l = self.l();
        let u = self.u();
        let p = self.p;
        let q = self.q;

        (p, l, u, q)
    }
}

impl<T: ComplexField, D: DimMin<D, Output = D>> FullPivLU<T, D, D>
where
    DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), D>,
{
    /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
    ///
    /// Returns `None` if the decomposed matrix is not invertible.
    #[must_use = "Did you mean to use solve_mut()?"]
    pub fn solve<R2: Dim, C2: Dim, S2>(
        &self,
        b: &Matrix<T, R2, C2, S2>,
    ) -> Option<OMatrix<T, R2, C2>>
    where
        S2: Storage<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R2, D>,
        DefaultAllocator: Allocator<T, R2, C2>,
    {
        let mut res = b.clone_owned();
        if self.solve_mut(&mut res) {
            Some(res)
        } else {
            None
        }
    }

    /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
    ///
    /// If the decomposed matrix is not invertible, this returns `false` and its input `b` may
    /// be overwritten with garbage.
    pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
    where
        S2: StorageMut<T, R2, C2>,
        ShapeConstraint: SameNumberOfRows<R2, D>,
    {
        assert_eq!(
            self.lu.nrows(),
            b.nrows(),
            "FullPivLU solve matrix dimension mismatch."
        );
        assert!(
            self.lu.is_square(),
            "FullPivLU solve: unable to solve a non-square system."
        );

        if self.is_invertible() {
            self.p.permute_rows(b);
            let _ = self.lu.solve_lower_triangular_with_diag_mut(b, T::one());
            let _ = self.lu.solve_upper_triangular_mut(b);
            self.q.inv_permute_rows(b);

            true
        } else {
            false
        }
    }

    /// Computes the inverse of the decomposed matrix.
    ///
    /// Returns `None` if the decomposed matrix is not invertible.
    #[must_use]
    pub fn try_inverse(&self) -> Option<OMatrix<T, D, D>> {
        assert!(
            self.lu.is_square(),
            "FullPivLU inverse: unable to compute the inverse of a non-square matrix."
        );

        let (nrows, ncols) = self.lu.shape_generic();

        let mut res = OMatrix::identity_generic(nrows, ncols);
        if self.solve_mut(&mut res) {
            Some(res)
        } else {
            None
        }
    }

    /// Indicates if the decomposed matrix is invertible.
    #[must_use]
    pub fn is_invertible(&self) -> bool {
        assert!(
            self.lu.is_square(),
            "FullPivLU: unable to test the invertibility of a non-square matrix."
        );

        let dim = self.lu.nrows();
        !self.lu[(dim - 1, dim - 1)].is_zero()
    }

    /// Computes the determinant of the decomposed matrix.
    #[must_use]
    pub fn determinant(&self) -> T {
        assert!(
            self.lu.is_square(),
            "FullPivLU determinant: unable to compute the determinant of a non-square matrix."
        );

        let dim = self.lu.nrows();
        let mut res = self.lu[(dim - 1, dim - 1)].clone();
        if !res.is_zero() {
            for i in 0..dim - 1 {
                res *= unsafe { self.lu.get_unchecked((i, i)).clone() };
            }

            res * self.p.determinant() * self.q.determinant()
        } else {
            T::zero()
        }
    }
}