bindgen/ir/analysis/derive.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
//! Determining which types for which we cannot emit `#[derive(Trait)]`.
use std::fmt;
use super::{generate_dependencies, ConstrainResult, MonotoneFramework};
use crate::ir::analysis::has_vtable::HasVtable;
use crate::ir::comp::CompKind;
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::derive::CanDerive;
use crate::ir::function::FunctionSig;
use crate::ir::item::{IsOpaque, Item};
use crate::ir::layout::Layout;
use crate::ir::template::TemplateParameters;
use crate::ir::traversal::{EdgeKind, Trace};
use crate::ir::ty::RUST_DERIVE_IN_ARRAY_LIMIT;
use crate::ir::ty::{Type, TypeKind};
use crate::{Entry, HashMap, HashSet};
/// Which trait to consider when doing the `CannotDerive` analysis.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum DeriveTrait {
/// The `Copy` trait.
Copy,
/// The `Debug` trait.
Debug,
/// The `Default` trait.
Default,
/// The `Hash` trait.
Hash,
/// The `PartialEq` and `PartialOrd` traits.
PartialEqOrPartialOrd,
}
/// An analysis that finds for each IR item whether a trait cannot be derived.
///
/// We use the monotone constraint function `cannot_derive`, defined as follows
/// for type T:
///
/// * If T is Opaque and the layout of the type is known, get this layout as an
/// opaquetype and check whether it can derive using trivial checks.
///
/// * If T is Array, a trait cannot be derived if the array is incomplete,
/// if the length of the array is larger than the limit (unless the trait
/// allows it), or the trait cannot be derived for the type of data the array
/// contains.
///
/// * If T is Vector, a trait cannot be derived if the trait cannot be derived
/// for the type of data the vector contains.
///
/// * If T is a type alias, a templated alias or an indirection to another type,
/// the trait cannot be derived if the trait cannot be derived for type T
/// refers to.
///
/// * If T is a compound type, the trait cannot be derived if the trait cannot
/// be derived for any of its base members or fields.
///
/// * If T is an instantiation of an abstract template definition, the trait
/// cannot be derived if any of the template arguments or template definition
/// cannot derive the trait.
///
/// * For all other (simple) types, compiler and standard library limitations
/// dictate whether the trait is implemented.
#[derive(Debug, Clone)]
pub struct CannotDerive<'ctx> {
ctx: &'ctx BindgenContext,
derive_trait: DeriveTrait,
// The incremental result of this analysis's computation.
// Contains information whether particular item can derive `derive_trait`
can_derive: HashMap<ItemId, CanDerive>,
// Dependencies saying that if a key ItemId has been inserted into the
// `cannot_derive_partialeq_or_partialord` set, then each of the ids
// in Vec<ItemId> need to be considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// can derive `derive_trait`.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}
type EdgePredicate = fn(EdgeKind) -> bool;
fn consider_edge_default(kind: EdgeKind) -> bool {
match kind {
// These are the only edges that can affect whether a type can derive
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::TypeReference |
EdgeKind::VarType |
EdgeKind::TemplateArgument |
EdgeKind::TemplateDeclaration |
EdgeKind::TemplateParameterDefinition => true,
EdgeKind::Constructor |
EdgeKind::Destructor |
EdgeKind::FunctionReturn |
EdgeKind::FunctionParameter |
EdgeKind::InnerType |
EdgeKind::InnerVar |
EdgeKind::Method |
EdgeKind::Generic => false,
}
}
impl<'ctx> CannotDerive<'ctx> {
fn insert<Id: Into<ItemId>>(
&mut self,
id: Id,
can_derive: CanDerive,
) -> ConstrainResult {
let id = id.into();
trace!(
"inserting {:?} can_derive<{}>={:?}",
id,
self.derive_trait,
can_derive
);
if let CanDerive::Yes = can_derive {
return ConstrainResult::Same;
}
match self.can_derive.entry(id) {
Entry::Occupied(mut entry) => {
if *entry.get() < can_derive {
entry.insert(can_derive);
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
Entry::Vacant(entry) => {
entry.insert(can_derive);
ConstrainResult::Changed
}
}
}
fn constrain_type(&mut self, item: &Item, ty: &Type) -> CanDerive {
if !self.ctx.allowlisted_items().contains(&item.id()) {
let can_derive = self
.ctx
.blocklisted_type_implements_trait(item, self.derive_trait);
match can_derive {
CanDerive::Yes => trace!(
" blocklisted type explicitly implements {}",
self.derive_trait
),
CanDerive::Manually => trace!(
" blocklisted type requires manual implementation of {}",
self.derive_trait
),
CanDerive::No => trace!(
" cannot derive {} for blocklisted type",
self.derive_trait
),
}
return can_derive;
}
if self.derive_trait.not_by_name(self.ctx, item) {
trace!(
" cannot derive {} for explicitly excluded type",
self.derive_trait
);
return CanDerive::No;
}
trace!("ty: {:?}", ty);
if item.is_opaque(self.ctx, &()) {
if !self.derive_trait.can_derive_union() &&
ty.is_union() &&
self.ctx.options().rust_features().untagged_union
{
trace!(
" cannot derive {} for Rust unions",
self.derive_trait
);
return CanDerive::No;
}
let layout_can_derive =
ty.layout(self.ctx).map_or(CanDerive::Yes, |l| {
l.opaque().array_size_within_derive_limit(self.ctx)
});
match layout_can_derive {
CanDerive::Yes => {
trace!(
" we can trivially derive {} for the layout",
self.derive_trait
);
}
_ => {
trace!(
" we cannot derive {} for the layout",
self.derive_trait
);
}
};
return layout_can_derive;
}
match *ty.kind() {
// Handle the simple cases. These can derive traits without further
// information.
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Complex(..) |
TypeKind::Float(..) |
TypeKind::Enum(..) |
TypeKind::TypeParam |
TypeKind::UnresolvedTypeRef(..) |
TypeKind::Reference(..) |
TypeKind::ObjCInterface(..) |
TypeKind::ObjCId |
TypeKind::ObjCSel => {
return self.derive_trait.can_derive_simple(ty.kind());
}
TypeKind::Pointer(inner) => {
let inner_type =
self.ctx.resolve_type(inner).canonical_type(self.ctx);
if let TypeKind::Function(ref sig) = *inner_type.kind() {
self.derive_trait.can_derive_fnptr(sig)
} else {
self.derive_trait.can_derive_pointer()
}
}
TypeKind::Function(ref sig) => {
self.derive_trait.can_derive_fnptr(sig)
}
// Complex cases need more information
TypeKind::Array(t, len) => {
let inner_type =
self.can_derive.get(&t.into()).cloned().unwrap_or_default();
if inner_type != CanDerive::Yes {
trace!(
" arrays of T for which we cannot derive {} \
also cannot derive {}",
self.derive_trait,
self.derive_trait
);
return CanDerive::No;
}
if len == 0 && !self.derive_trait.can_derive_incomplete_array()
{
trace!(
" cannot derive {} for incomplete arrays",
self.derive_trait
);
return CanDerive::No;
}
if self.derive_trait.can_derive_large_array(self.ctx) {
trace!(" array can derive {}", self.derive_trait);
return CanDerive::Yes;
}
if len > RUST_DERIVE_IN_ARRAY_LIMIT {
trace!(
" array is too large to derive {}, but it may be implemented", self.derive_trait
);
return CanDerive::Manually;
}
trace!(
" array is small enough to derive {}",
self.derive_trait
);
CanDerive::Yes
}
TypeKind::Vector(t, len) => {
let inner_type =
self.can_derive.get(&t.into()).cloned().unwrap_or_default();
if inner_type != CanDerive::Yes {
trace!(
" vectors of T for which we cannot derive {} \
also cannot derive {}",
self.derive_trait,
self.derive_trait
);
return CanDerive::No;
}
assert_ne!(len, 0, "vectors cannot have zero length");
self.derive_trait.can_derive_vector()
}
TypeKind::Comp(ref info) => {
assert!(
!info.has_non_type_template_params(),
"The early ty.is_opaque check should have handled this case"
);
if !self.derive_trait.can_derive_compound_forward_decl() &&
info.is_forward_declaration()
{
trace!(
" cannot derive {} for forward decls",
self.derive_trait
);
return CanDerive::No;
}
// NOTE: Take into account that while unions in C and C++ are copied by
// default, the may have an explicit destructor in C++, so we can't
// defer this check just for the union case.
if !self.derive_trait.can_derive_compound_with_destructor() &&
self.ctx.lookup_has_destructor(
item.id().expect_type_id(self.ctx),
)
{
trace!(
" comp has destructor which cannot derive {}",
self.derive_trait
);
return CanDerive::No;
}
if info.kind() == CompKind::Union {
if self.derive_trait.can_derive_union() {
if self.ctx.options().rust_features().untagged_union &&
// https://github.com/rust-lang/rust/issues/36640
(!info.self_template_params(self.ctx).is_empty() ||
!item.all_template_params(self.ctx).is_empty())
{
trace!(
" cannot derive {} for Rust union because issue 36640", self.derive_trait
);
return CanDerive::No;
}
// fall through to be same as non-union handling
} else {
if self.ctx.options().rust_features().untagged_union {
trace!(
" cannot derive {} for Rust unions",
self.derive_trait
);
return CanDerive::No;
}
let layout_can_derive =
ty.layout(self.ctx).map_or(CanDerive::Yes, |l| {
l.opaque()
.array_size_within_derive_limit(self.ctx)
});
match layout_can_derive {
CanDerive::Yes => {
trace!(
" union layout can trivially derive {}",
self.derive_trait
);
}
_ => {
trace!(
" union layout cannot derive {}",
self.derive_trait
);
}
};
return layout_can_derive;
}
}
if !self.derive_trait.can_derive_compound_with_vtable() &&
item.has_vtable(self.ctx)
{
trace!(
" cannot derive {} for comp with vtable",
self.derive_trait
);
return CanDerive::No;
}
// Bitfield units are always represented as arrays of u8, but
// they're not traced as arrays, so we need to check here
// instead.
if !self.derive_trait.can_derive_large_array(self.ctx) &&
info.has_too_large_bitfield_unit() &&
!item.is_opaque(self.ctx, &())
{
trace!(
" cannot derive {} for comp with too large bitfield unit",
self.derive_trait
);
return CanDerive::No;
}
let pred = self.derive_trait.consider_edge_comp();
self.constrain_join(item, pred)
}
TypeKind::ResolvedTypeRef(..) |
TypeKind::TemplateAlias(..) |
TypeKind::Alias(..) |
TypeKind::BlockPointer(..) => {
let pred = self.derive_trait.consider_edge_typeref();
self.constrain_join(item, pred)
}
TypeKind::TemplateInstantiation(..) => {
let pred = self.derive_trait.consider_edge_tmpl_inst();
self.constrain_join(item, pred)
}
TypeKind::Opaque => unreachable!(
"The early ty.is_opaque check should have handled this case"
),
}
}
fn constrain_join(
&mut self,
item: &Item,
consider_edge: EdgePredicate,
) -> CanDerive {
let mut candidate = None;
item.trace(
self.ctx,
&mut |sub_id, edge_kind| {
// Ignore ourselves, since union with ourself is a
// no-op. Ignore edges that aren't relevant to the
// analysis.
if sub_id == item.id() || !consider_edge(edge_kind) {
return;
}
let can_derive = self.can_derive
.get(&sub_id)
.cloned()
.unwrap_or_default();
match can_derive {
CanDerive::Yes => trace!(" member {:?} can derive {}", sub_id, self.derive_trait),
CanDerive::Manually => trace!(" member {:?} cannot derive {}, but it may be implemented", sub_id, self.derive_trait),
CanDerive::No => trace!(" member {:?} cannot derive {}", sub_id, self.derive_trait),
}
*candidate.get_or_insert(CanDerive::Yes) |= can_derive;
},
&(),
);
if candidate.is_none() {
trace!(
" can derive {} because there are no members",
self.derive_trait
);
}
candidate.unwrap_or_default()
}
}
impl DeriveTrait {
fn not_by_name(&self, ctx: &BindgenContext, item: &Item) -> bool {
match self {
DeriveTrait::Copy => ctx.no_copy_by_name(item),
DeriveTrait::Debug => ctx.no_debug_by_name(item),
DeriveTrait::Default => ctx.no_default_by_name(item),
DeriveTrait::Hash => ctx.no_hash_by_name(item),
DeriveTrait::PartialEqOrPartialOrd => {
ctx.no_partialeq_by_name(item)
}
}
}
fn consider_edge_comp(&self) -> EdgePredicate {
match self {
DeriveTrait::PartialEqOrPartialOrd => consider_edge_default,
_ => |kind| matches!(kind, EdgeKind::BaseMember | EdgeKind::Field),
}
}
fn consider_edge_typeref(&self) -> EdgePredicate {
match self {
DeriveTrait::PartialEqOrPartialOrd => consider_edge_default,
_ => |kind| kind == EdgeKind::TypeReference,
}
}
fn consider_edge_tmpl_inst(&self) -> EdgePredicate {
match self {
DeriveTrait::PartialEqOrPartialOrd => consider_edge_default,
_ => |kind| {
matches!(
kind,
EdgeKind::TemplateArgument | EdgeKind::TemplateDeclaration
)
},
}
}
fn can_derive_large_array(&self, ctx: &BindgenContext) -> bool {
if ctx.options().rust_features().larger_arrays {
!matches!(self, DeriveTrait::Default)
} else {
matches!(self, DeriveTrait::Copy)
}
}
fn can_derive_union(&self) -> bool {
matches!(self, DeriveTrait::Copy)
}
fn can_derive_compound_with_destructor(&self) -> bool {
!matches!(self, DeriveTrait::Copy)
}
fn can_derive_compound_with_vtable(&self) -> bool {
!matches!(self, DeriveTrait::Default)
}
fn can_derive_compound_forward_decl(&self) -> bool {
matches!(self, DeriveTrait::Copy | DeriveTrait::Debug)
}
fn can_derive_incomplete_array(&self) -> bool {
!matches!(
self,
DeriveTrait::Copy |
DeriveTrait::Hash |
DeriveTrait::PartialEqOrPartialOrd
)
}
fn can_derive_fnptr(&self, f: &FunctionSig) -> CanDerive {
match (self, f.function_pointers_can_derive()) {
(DeriveTrait::Copy, _) | (DeriveTrait::Default, _) | (_, true) => {
trace!(" function pointer can derive {}", self);
CanDerive::Yes
}
(DeriveTrait::Debug, false) => {
trace!(" function pointer cannot derive {}, but it may be implemented", self);
CanDerive::Manually
}
(_, false) => {
trace!(" function pointer cannot derive {}", self);
CanDerive::No
}
}
}
fn can_derive_vector(&self) -> CanDerive {
match self {
DeriveTrait::PartialEqOrPartialOrd => {
// FIXME: vectors always can derive PartialEq, but they should
// not derive PartialOrd:
// https://github.com/rust-lang-nursery/packed_simd/issues/48
trace!(" vectors cannot derive PartialOrd");
CanDerive::No
}
_ => {
trace!(" vector can derive {}", self);
CanDerive::Yes
}
}
}
fn can_derive_pointer(&self) -> CanDerive {
match self {
DeriveTrait::Default => {
trace!(" pointer cannot derive Default");
CanDerive::No
}
_ => {
trace!(" pointer can derive {}", self);
CanDerive::Yes
}
}
}
fn can_derive_simple(&self, kind: &TypeKind) -> CanDerive {
match (self, kind) {
// === Default ===
(DeriveTrait::Default, TypeKind::Void) |
(DeriveTrait::Default, TypeKind::NullPtr) |
(DeriveTrait::Default, TypeKind::Enum(..)) |
(DeriveTrait::Default, TypeKind::Reference(..)) |
(DeriveTrait::Default, TypeKind::TypeParam) |
(DeriveTrait::Default, TypeKind::ObjCInterface(..)) |
(DeriveTrait::Default, TypeKind::ObjCId) |
(DeriveTrait::Default, TypeKind::ObjCSel) => {
trace!(" types that always cannot derive Default");
CanDerive::No
}
(DeriveTrait::Default, TypeKind::UnresolvedTypeRef(..)) => {
unreachable!(
"Type with unresolved type ref can't reach derive default"
)
}
// === Hash ===
(DeriveTrait::Hash, TypeKind::Float(..)) |
(DeriveTrait::Hash, TypeKind::Complex(..)) => {
trace!(" float cannot derive Hash");
CanDerive::No
}
// === others ===
_ => {
trace!(" simple type that can always derive {}", self);
CanDerive::Yes
}
}
}
}
impl fmt::Display for DeriveTrait {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let s = match self {
DeriveTrait::Copy => "Copy",
DeriveTrait::Debug => "Debug",
DeriveTrait::Default => "Default",
DeriveTrait::Hash => "Hash",
DeriveTrait::PartialEqOrPartialOrd => "PartialEq/PartialOrd",
};
s.fmt(f)
}
}
impl<'ctx> MonotoneFramework for CannotDerive<'ctx> {
type Node = ItemId;
type Extra = (&'ctx BindgenContext, DeriveTrait);
type Output = HashMap<ItemId, CanDerive>;
fn new(
(ctx, derive_trait): (&'ctx BindgenContext, DeriveTrait),
) -> CannotDerive<'ctx> {
let can_derive = HashMap::default();
let dependencies = generate_dependencies(ctx, consider_edge_default);
CannotDerive {
ctx,
derive_trait,
can_derive,
dependencies,
}
}
fn initial_worklist(&self) -> Vec<ItemId> {
// The transitive closure of all allowlisted items, including explicitly
// blocklisted items.
self.ctx
.allowlisted_items()
.iter()
.cloned()
.flat_map(|i| {
let mut reachable = vec![i];
i.trace(
self.ctx,
&mut |s, _| {
reachable.push(s);
},
&(),
);
reachable
})
.collect()
}
fn constrain(&mut self, id: ItemId) -> ConstrainResult {
trace!("constrain: {:?}", id);
if let Some(CanDerive::No) = self.can_derive.get(&id).cloned() {
trace!(" already know it cannot derive {}", self.derive_trait);
return ConstrainResult::Same;
}
let item = self.ctx.resolve_item(id);
let can_derive = match item.as_type() {
Some(ty) => {
let mut can_derive = self.constrain_type(item, ty);
if let CanDerive::Yes = can_derive {
let is_reached_limit =
|l: Layout| l.align > RUST_DERIVE_IN_ARRAY_LIMIT;
if !self.derive_trait.can_derive_large_array(self.ctx) &&
ty.layout(self.ctx).map_or(false, is_reached_limit)
{
// We have to be conservative: the struct *could* have enough
// padding that we emit an array that is longer than
// `RUST_DERIVE_IN_ARRAY_LIMIT`. If we moved padding calculations
// into the IR and computed them before this analysis, then we could
// be precise rather than conservative here.
can_derive = CanDerive::Manually;
}
}
can_derive
}
None => self.constrain_join(item, consider_edge_default),
};
self.insert(id, can_derive)
}
fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where
F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}
impl<'ctx> From<CannotDerive<'ctx>> for HashMap<ItemId, CanDerive> {
fn from(analysis: CannotDerive<'ctx>) -> Self {
extra_assert!(analysis
.can_derive
.values()
.all(|v| *v != CanDerive::Yes));
analysis.can_derive
}
}
/// Convert a `HashMap<ItemId, CanDerive>` into a `HashSet<ItemId>`.
///
/// Elements that are not `CanDerive::Yes` are kept in the set, so that it
/// represents all items that cannot derive.
pub fn as_cannot_derive_set(
can_derive: HashMap<ItemId, CanDerive>,
) -> HashSet<ItemId> {
can_derive
.into_iter()
.filter_map(|(k, v)| if v != CanDerive::Yes { Some(k) } else { None })
.collect()
}