ncollide3d/procedural/
quad.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
use super::{IndexBuffer, TriMesh};
use crate::math::{Point, Vector};
use na::{self, Point2, Point3, RealField};

/// Adds a double-sided quad to the scene.
///
/// The quad is initially centered at (0, 0, 0). Its normal is the `z` axis. The quad itself is
/// composed of a user-defined number of triangles regularly spaced on a grid. This is the main way
/// to draw height maps.
///
/// # Arguments
/// * `w` - the quad width.
/// * `h` - the quad height.
/// * `usubdivs` - number of horizontal subdivisions. This correspond to the number of squares
/// which will be placed horizontally on each line. Must not be `0`.
/// * `vsubdivs` - number of vertical subdivisions. This correspond to the number of squares
/// which will be placed vertically on each line. Must not be `0`.
pub fn quad<N: RealField + Copy>(
    width: N,
    height: N,
    usubdivs: usize,
    vsubdivs: usize,
) -> TriMesh<N> {
    let mut quad = unit_quad(usubdivs, vsubdivs);

    let mut s = Vector::zeros();
    s[0] = width;
    s[1] = height;

    for i in 2..3 {
        s[i] = na::one();
    }

    quad.scale_by(&s);

    quad
}

/// Adds a double-sided quad with the specified grid of vertices.
///
/// Normals are automatically computed.
///
/// # Arguments
/// * `nhpoints` - number of columns on the grid.
/// * `nvpoints` - number of lines on the grid.
pub fn quad_with_vertices<N: RealField + Copy>(
    vertices: &[Point<N>],
    nhpoints: usize,
    nvpoints: usize,
) -> TriMesh<N> {
    assert!(
        nhpoints > 1 && nvpoints > 1,
        "The number of points must be at least 2 in each dimension."
    );

    let mut res = unit_quad(nhpoints - 1, nvpoints - 1);

    for (dest, src) in res.coords.iter_mut().zip(vertices.iter()) {
        *dest = src.clone();
    }

    res
}

/// Adds a double-sided quad with unit size to the scene.
///
/// The quad is initially centered at (0, 0, 0). Its normal is the `z` axis. The quad itself is
/// composed of a user-defined number of triangles regularly spaced on a grid. This is the main way
/// to draw height maps.
///
/// # Arguments
/// * `usubdivs` - number of horizontal subdivisions. This correspond to the number of squares
/// which will be placed horizontally on each line. Must not be `0`.
/// * `vsubdivs` - number of vertical subdivisions. This correspond to the number of squares
/// which will be placed vertically on each line. Must not be `0`.
pub fn unit_quad<N: RealField + Copy>(usubdivs: usize, vsubdivs: usize) -> TriMesh<N> {
    assert!(
        usubdivs > 0 && vsubdivs > 0,
        "The number of subdivisions cannot be zero"
    );
    assert!(3 >= 2);

    let wstep = na::one::<N>() / na::convert(usubdivs as f64);
    let hstep = na::one::<N>() / na::convert(vsubdivs as f64);
    let cw = na::convert(0.5);
    let ch = na::convert(0.5);

    let mut vertices = Vec::new();
    let mut normals = Vec::new();
    let mut triangles = Vec::new();
    let mut tex_coords = Vec::new();

    // create the vertices
    for i in 0usize..vsubdivs + 1 {
        for j in 0usize..usubdivs + 1 {
            let ni: N = na::convert(i as f64);
            let nj: N = na::convert(j as f64);

            let mut v = Point::origin();
            v[0] = nj * wstep - cw;
            v[1] = ni * hstep - ch;
            vertices.push(v);
            let _1 = na::one::<N>();
            tex_coords.push(Point2::new(_1 - nj * wstep, _1 - ni * hstep))
        }
    }

    // create the normals
    for _ in 0..(vsubdivs + 1) * (usubdivs + 1) {
        let mut n = Vector::zeros();
        n[0] = na::one();
        normals.push(n)
    }

    // create triangles
    fn dl_triangle(i: u32, j: u32, ws: u32) -> Point3<u32> {
        Point3::new((i + 1) * ws + j, i * ws + j, (i + 1) * ws + j + 1)
    }

    fn ur_triangle(i: u32, j: u32, ws: u32) -> Point3<u32> {
        Point3::new(i * ws + j, i * ws + (j + 1), (i + 1) * ws + j + 1)
    }

    for i in 0usize..vsubdivs {
        for j in 0usize..usubdivs {
            // build two triangles...
            triangles.push(dl_triangle(i as u32, j as u32, (usubdivs + 1) as u32));
            triangles.push(ur_triangle(i as u32, j as u32, (usubdivs + 1) as u32));
        }
    }

    TriMesh::new(
        vertices,
        Some(normals),
        Some(tex_coords),
        Some(IndexBuffer::Unified(triangles)),
    )
}