symphonia_core/util.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
//! The `util` module provides a repository of commonly used utility functions sorted into distinct
//! categories.
//!
//! If a function is used all-over the codebase, and does not belong to specific top-level module,
//! it should be placed here.
pub mod bits {
//! Utilities for bit manipulation.
/// Sign extends an arbitrary, 8-bit or less, signed two's complement integer stored within an
/// u8 to a full width i8.
#[inline(always)]
pub fn sign_extend_leq8_to_i8(value: u8, width: u32) -> i8 {
// Rust uses an arithmetic shift right (the original sign bit is repeatedly shifted on) for
// signed integer types. Therefore, shift the value to the right-hand side of the integer,
// then shift it back to extend the sign bit.
(value.wrapping_shl(8 - width) as i8).wrapping_shr(8 - width)
}
/// Sign extends an arbitrary, 16-bit or less, signed two's complement integer stored within an
/// u16 to a full width i16.
#[inline(always)]
pub fn sign_extend_leq16_to_i16(value: u16, width: u32) -> i16 {
(value.wrapping_shl(16 - width) as i16).wrapping_shr(16 - width)
}
/// Sign extends an arbitrary, 32-bit or less, signed two's complement integer stored within an
/// u32 to a full width i32.
#[inline(always)]
pub fn sign_extend_leq32_to_i32(value: u32, width: u32) -> i32 {
(value.wrapping_shl(32 - width) as i32).wrapping_shr(32 - width)
}
/// Sign extends an arbitrary, 64-bit or less, signed two's complement integer stored within an
/// u64 to a full width i64.
#[inline(always)]
pub fn sign_extend_leq64_to_i64(value: u64, width: u32) -> i64 {
(value.wrapping_shl(64 - width) as i64).wrapping_shr(64 - width)
}
/// Masks the bit at the specified bit index.
#[inline(always)]
pub fn mask_at(idx: u32) -> u8 {
debug_assert!(idx <= 7);
1 << idx
}
/// Masks all bits with an index greater than or equal to idx.
#[inline(always)]
pub fn mask_upper_eq(idx: u32) -> u8 {
debug_assert!(idx <= 7);
!((1 << idx) - 1)
}
/// Masks all bits with an index greater than idx.
#[inline(always)]
pub fn mask_upper(idx: u32) -> u8 {
debug_assert!(idx <= 7);
!((1 << idx) - 1) ^ (1 << idx)
}
/// Masks all bits with an index less than or equal to idx.
#[inline(always)]
pub fn mask_lower_eq(idx: u32) -> u8 {
debug_assert!(idx <= 7);
((1 << idx) - 1) ^ (1 << idx)
}
/// Masks all bits with an index less than idx.
#[inline(always)]
pub fn mask_lower(idx: u32) -> u8 {
debug_assert!(idx <= 7);
(1 << idx) - 1
}
/// Masks out all bits in positions less than upper, but greater than or equal to lower
/// (upper < bit <= lower)
#[inline(always)]
pub fn mask_range(upper: u32, lower: u32) -> u8 {
debug_assert!(upper <= 8);
debug_assert!(lower <= 8);
((0xff_u32 << upper) ^ (0xff_u32 << lower)) as u8
}
/// Returns the number of trailing ones in an unsigned 8-bit integer.
#[inline(always)]
pub fn trailing_ones_u8(value: u8) -> u32 {
(!value & value.wrapping_add(1)).trailing_zeros()
}
/// Returns the number of trailing ones in an unsigned 16-bit integer.
#[inline(always)]
pub fn trailing_ones_u16(value: u16) -> u32 {
(!value & value.wrapping_add(1)).trailing_zeros()
}
/// Returns the number of trailing ones in an unsigned 32-bit integer.
#[inline(always)]
pub fn trailing_ones_u32(value: u32) -> u32 {
(!value & value.wrapping_add(1)).trailing_zeros()
}
/// Returns the number of trailing ones in an unsigned 64-bit integer.
#[inline(always)]
pub fn trailing_ones_u64(value: u64) -> u32 {
(!value & value.wrapping_add(1)).trailing_zeros()
}
/// Returns true if the unsigned 16-bit integer contains one or more bytes which have all bits
/// set.
#[inline(always)]
pub fn contains_ones_byte_u16(value: u16) -> bool {
((value & !value.wrapping_add(0x0101)) & 0x8080) != 0
}
/// Returns true if the unsigned 32-bit integer contains one or more bytes which have all bits
/// set.
#[inline(always)]
pub fn contains_ones_byte_u32(value: u32) -> bool {
((value & !value.wrapping_add(0x0101_0101)) & 0x8080_8080) != 0
}
/// Returns true if the unsigned 64-bit integer contains one or more bytes which have all bits
/// set.
#[inline(always)]
pub fn contains_ones_byte_u64(value: u64) -> bool {
((value & !value.wrapping_add(0x0101_0101_0101_0101)) & 0x8080_8080_8080_8080) != 0
}
#[test]
fn verify_trailing_ones() {
assert_eq!(trailing_ones_u32(0), 0);
assert_eq!(trailing_ones_u32(1), 1);
assert_eq!(trailing_ones_u32(2), 0);
assert_eq!(trailing_ones_u32(3), 2);
assert_eq!(trailing_ones_u32(0xf00f_7fff), 15);
assert_eq!(trailing_ones_u32(0xffff_ffff), 32);
}
#[test]
fn verify_masks() {
assert_eq!(mask_at(0), 0b0000_0001);
assert_eq!(mask_at(1), 0b0000_0010);
assert_eq!(mask_at(2), 0b0000_0100);
assert_eq!(mask_at(3), 0b0000_1000);
assert_eq!(mask_at(4), 0b0001_0000);
assert_eq!(mask_at(5), 0b0010_0000);
assert_eq!(mask_at(6), 0b0100_0000);
assert_eq!(mask_at(7), 0b1000_0000);
assert_eq!(mask_upper(0), 0b1111_1110);
assert_eq!(mask_upper(1), 0b1111_1100);
assert_eq!(mask_upper(2), 0b1111_1000);
assert_eq!(mask_upper(3), 0b1111_0000);
assert_eq!(mask_upper(4), 0b1110_0000);
assert_eq!(mask_upper(5), 0b1100_0000);
assert_eq!(mask_upper(6), 0b1000_0000);
assert_eq!(mask_upper(7), 0b0000_0000);
assert_eq!(mask_upper_eq(0), 0b1111_1111);
assert_eq!(mask_upper_eq(1), 0b1111_1110);
assert_eq!(mask_upper_eq(2), 0b1111_1100);
assert_eq!(mask_upper_eq(3), 0b1111_1000);
assert_eq!(mask_upper_eq(4), 0b1111_0000);
assert_eq!(mask_upper_eq(5), 0b1110_0000);
assert_eq!(mask_upper_eq(6), 0b1100_0000);
assert_eq!(mask_upper_eq(7), 0b1000_0000);
assert_eq!(mask_lower(0), 0b0000_0000);
assert_eq!(mask_lower(1), 0b0000_0001);
assert_eq!(mask_lower(2), 0b0000_0011);
assert_eq!(mask_lower(3), 0b0000_0111);
assert_eq!(mask_lower(4), 0b0000_1111);
assert_eq!(mask_lower(5), 0b0001_1111);
assert_eq!(mask_lower(6), 0b0011_1111);
assert_eq!(mask_lower(7), 0b0111_1111);
assert_eq!(mask_lower_eq(0), 0b0000_0001);
assert_eq!(mask_lower_eq(1), 0b0000_0011);
assert_eq!(mask_lower_eq(2), 0b0000_0111);
assert_eq!(mask_lower_eq(3), 0b0000_1111);
assert_eq!(mask_lower_eq(4), 0b0001_1111);
assert_eq!(mask_lower_eq(5), 0b0011_1111);
assert_eq!(mask_lower_eq(6), 0b0111_1111);
assert_eq!(mask_lower_eq(7), 0b1111_1111);
assert_eq!(mask_range(0, 0), 0b0000_0000);
assert_eq!(mask_range(1, 1), 0b0000_0000);
assert_eq!(mask_range(7, 7), 0b0000_0000);
assert_eq!(mask_range(1, 0), 0b0000_0001);
assert_eq!(mask_range(2, 0), 0b0000_0011);
assert_eq!(mask_range(7, 0), 0b0111_1111);
assert_eq!(mask_range(5, 2), 0b0001_1100);
assert_eq!(mask_range(7, 2), 0b0111_1100);
assert_eq!(mask_range(8, 2), 0b1111_1100);
}
}
pub mod clamp {
//! Utilities for clamping numeric values to a defined range.
/// Clamps the given value to the [0, 255] range.
#[inline]
pub fn clamp_u8(val: u16) -> u8 {
if val & !0xff == 0 {
val as u8
}
else {
0xff
}
}
/// Clamps the given value to the [-128, 127] range.
#[inline]
pub fn clamp_i8(val: i16) -> i8 {
// Add 128 (0x80) to the given value, val, to make the i8 range of [-128,127] map to
// [0,255]. Valid negative numbers are now positive so all bits above the 8th bit should be
// 0. Check this by ANDing with 0xffffff00 (!0xff). If val wraps, the test is still valid as
// it'll wrap around to the other numerical limit +/- 128, which is still well outside the
// limits of an i8.
if val.wrapping_add(0x80) & !0xff == 0 {
val as i8
}
else {
// The given value was determined to be outside the valid numerical range of i8.
//
// Shift right all the magnitude bits of val, leaving val to be either 0xff if val was
// negative (sign bit was 1), or 0x00 if val was positive (sign bit was 0). Xor the
// shift value with 0x7f (the positive limit) to obtain the appropriate numerical limit.
//
// E.g., 0x7f ^ 0x00 = 0x7f (127)
// E.g., 0x7f ^ 0xff = 0x10 (-128)
0x7f ^ val.wrapping_shr(15) as i8
}
}
/// Clamps the given value to the [0, 65_535] range.
#[inline]
pub fn clamp_u16(val: u32) -> u16 {
if val & !0xffff == 0 {
val as u16
}
else {
0xffff
}
}
/// Clamps the given value to the [-32_767, 32_768] range.
#[inline]
pub fn clamp_i16(val: i32) -> i16 {
if val.wrapping_add(0x8000) & !0xffff == 0 {
val as i16
}
else {
0x7fff ^ val.wrapping_shr(31) as i16
}
}
/// Clamps the given value to the [0, 16_777_215] range.
#[inline]
pub fn clamp_u24(val: u32) -> u32 {
if val & !0x00ff_ffff == 0 {
val
}
else {
0x00ff_ffff
}
}
/// Clamps the given value to the [-8_388_608, 8_388_607] range.
#[inline]
pub fn clamp_i24(val: i32) -> i32 {
if val.wrapping_add(0x0080_0000) & !0x00ff_ffff == 0 {
val
}
else {
0x007f_ffff ^ val.wrapping_shr(31)
}
}
/// Clamps the given value to the [0, 4_294_967_295] range.
#[inline]
pub fn clamp_u32(val: u64) -> u32 {
if val & !0xffff_ffff == 0 {
val as u32
}
else {
0xffff_ffff
}
}
/// Clamps the given value to the [-2_147_483_648, 2_147_483_647] range.
#[inline]
pub fn clamp_i32(val: i64) -> i32 {
if val.wrapping_add(0x8000_0000) & !0xffff_ffff == 0 {
val as i32
}
else {
0x7fff_ffff ^ val.wrapping_shr(63) as i32
}
}
/// Clamps the given value to the [-1.0, 1.0] range.
#[inline]
pub fn clamp_f32(val: f32) -> f32 {
// This slightly inelegant code simply returns min(max(1.0, val), -1.0). In release mode on
// platforms with SSE2 support, it will compile down to 4 SSE instructions with no branches,
// thereby making it the most performant clamping implementation for floating-point samples.
let mut clamped = val;
clamped = if clamped > 1.0 { 1.0 } else { clamped };
clamped = if clamped < -1.0 { -1.0 } else { clamped };
clamped
}
/// Clamps the given value to the [-1.0, 1.0] range.
#[inline]
pub fn clamp_f64(val: f64) -> f64 {
let mut clamped = val;
clamped = if clamped > 1.0 { 1.0 } else { clamped };
clamped = if clamped < -1.0 { -1.0 } else { clamped };
clamped
}
#[cfg(test)]
mod tests {
use super::*;
use std::{i16, i32, i64, i8, u16, u32, u64, u8};
#[test]
fn verify_clamp() {
assert_eq!(clamp_u8(256u16), u8::MAX);
assert_eq!(clamp_u8(u16::MAX), u8::MAX);
assert_eq!(clamp_i8(128i16), i8::MAX);
assert_eq!(clamp_i8(-129i16), i8::MIN);
assert_eq!(clamp_i8(i16::MAX), i8::MAX);
assert_eq!(clamp_i8(i16::MIN), i8::MIN);
assert_eq!(clamp_u16(65536u32), u16::MAX);
assert_eq!(clamp_u16(u32::MAX), u16::MAX);
assert_eq!(clamp_i16(32_768i32), i16::MAX);
assert_eq!(clamp_i16(-32_769i32), i16::MIN);
assert_eq!(clamp_i16(i32::MAX), i16::MAX);
assert_eq!(clamp_i16(i32::MIN), i16::MIN);
assert_eq!(clamp_u32(4_294_967_296u64), u32::MAX);
assert_eq!(clamp_u32(u64::MAX), u32::MAX);
assert_eq!(clamp_i32(2_147_483_648i64), i32::MAX);
assert_eq!(clamp_i32(-2_147_483_649i64), i32::MIN);
assert_eq!(clamp_i32(i64::MAX), i32::MAX);
assert_eq!(clamp_i32(i64::MIN), i32::MIN);
assert_eq!(clamp_f32(1.1), 1.0);
assert_eq!(clamp_f32(5.6), 1.0);
assert_eq!(clamp_f32(0.5), 0.5);
assert_eq!(clamp_f32(-1.1), -1.0);
assert_eq!(clamp_f32(-5.6), -1.0);
assert_eq!(clamp_f32(-0.5), -0.5);
assert_eq!(clamp_f64(1.1), 1.0);
assert_eq!(clamp_f64(5.6), 1.0);
assert_eq!(clamp_f64(0.5), 0.5);
assert_eq!(clamp_f64(-1.1), -1.0);
assert_eq!(clamp_f64(-5.6), -1.0);
assert_eq!(clamp_f64(-0.5), -0.5);
}
}
}