symphonia_core/
util.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

//! The `util` module provides a repository of commonly used utility functions sorted into distinct
//! categories.
//!
//! If a function is used all-over the codebase, and does not belong to specific top-level module,
//! it should be placed here.

pub mod bits {
    //! Utilities for bit manipulation.

    /// Sign extends an arbitrary, 8-bit or less, signed two's complement integer stored within an
    /// u8 to a full width i8.
    #[inline(always)]
    pub fn sign_extend_leq8_to_i8(value: u8, width: u32) -> i8 {
        // Rust uses an arithmetic shift right (the original sign bit is repeatedly shifted on) for
        // signed integer types. Therefore, shift the value to the right-hand side of the integer,
        // then shift it back to extend the sign bit.
        (value.wrapping_shl(8 - width) as i8).wrapping_shr(8 - width)
    }

    /// Sign extends an arbitrary, 16-bit or less, signed two's complement integer stored within an
    /// u16 to a full width i16.
    #[inline(always)]
    pub fn sign_extend_leq16_to_i16(value: u16, width: u32) -> i16 {
        (value.wrapping_shl(16 - width) as i16).wrapping_shr(16 - width)
    }

    /// Sign extends an arbitrary, 32-bit or less, signed two's complement integer stored within an
    /// u32 to a full width i32.
    #[inline(always)]
    pub fn sign_extend_leq32_to_i32(value: u32, width: u32) -> i32 {
        (value.wrapping_shl(32 - width) as i32).wrapping_shr(32 - width)
    }

    /// Sign extends an arbitrary, 64-bit or less, signed two's complement integer stored within an
    /// u64 to a full width i64.
    #[inline(always)]
    pub fn sign_extend_leq64_to_i64(value: u64, width: u32) -> i64 {
        (value.wrapping_shl(64 - width) as i64).wrapping_shr(64 - width)
    }

    /// Masks the bit at the specified bit index.
    #[inline(always)]
    pub fn mask_at(idx: u32) -> u8 {
        debug_assert!(idx <= 7);
        1 << idx
    }

    /// Masks all bits with an index greater than or equal to idx.
    #[inline(always)]
    pub fn mask_upper_eq(idx: u32) -> u8 {
        debug_assert!(idx <= 7);
        !((1 << idx) - 1)
    }

    /// Masks all bits with an index greater than idx.
    #[inline(always)]
    pub fn mask_upper(idx: u32) -> u8 {
        debug_assert!(idx <= 7);
        !((1 << idx) - 1) ^ (1 << idx)
    }

    /// Masks all bits with an index less than or equal to idx.
    #[inline(always)]
    pub fn mask_lower_eq(idx: u32) -> u8 {
        debug_assert!(idx <= 7);
        ((1 << idx) - 1) ^ (1 << idx)
    }

    /// Masks all bits with an index less than idx.
    #[inline(always)]
    pub fn mask_lower(idx: u32) -> u8 {
        debug_assert!(idx <= 7);
        (1 << idx) - 1
    }

    /// Masks out all bits in positions less than upper, but greater than or equal to lower
    /// (upper < bit <= lower)
    #[inline(always)]
    pub fn mask_range(upper: u32, lower: u32) -> u8 {
        debug_assert!(upper <= 8);
        debug_assert!(lower <= 8);
        ((0xff_u32 << upper) ^ (0xff_u32 << lower)) as u8
    }

    /// Returns the number of trailing ones in an unsigned 8-bit integer.
    #[inline(always)]
    pub fn trailing_ones_u8(value: u8) -> u32 {
        (!value & value.wrapping_add(1)).trailing_zeros()
    }

    /// Returns the number of trailing ones in an unsigned 16-bit integer.
    #[inline(always)]
    pub fn trailing_ones_u16(value: u16) -> u32 {
        (!value & value.wrapping_add(1)).trailing_zeros()
    }

    /// Returns the number of trailing ones in an unsigned 32-bit integer.
    #[inline(always)]
    pub fn trailing_ones_u32(value: u32) -> u32 {
        (!value & value.wrapping_add(1)).trailing_zeros()
    }

    /// Returns the number of trailing ones in an unsigned 64-bit integer.
    #[inline(always)]
    pub fn trailing_ones_u64(value: u64) -> u32 {
        (!value & value.wrapping_add(1)).trailing_zeros()
    }

    /// Returns true if the unsigned 16-bit integer contains one or more bytes which have all bits
    /// set.
    #[inline(always)]
    pub fn contains_ones_byte_u16(value: u16) -> bool {
        ((value & !value.wrapping_add(0x0101)) & 0x8080) != 0
    }

    /// Returns true if the unsigned 32-bit integer contains one or more bytes which have all bits
    /// set.
    #[inline(always)]
    pub fn contains_ones_byte_u32(value: u32) -> bool {
        ((value & !value.wrapping_add(0x0101_0101)) & 0x8080_8080) != 0
    }

    /// Returns true if the unsigned 64-bit integer contains one or more bytes which have all bits
    /// set.
    #[inline(always)]
    pub fn contains_ones_byte_u64(value: u64) -> bool {
        ((value & !value.wrapping_add(0x0101_0101_0101_0101)) & 0x8080_8080_8080_8080) != 0
    }

    #[test]
    fn verify_trailing_ones() {
        assert_eq!(trailing_ones_u32(0), 0);
        assert_eq!(trailing_ones_u32(1), 1);
        assert_eq!(trailing_ones_u32(2), 0);
        assert_eq!(trailing_ones_u32(3), 2);
        assert_eq!(trailing_ones_u32(0xf00f_7fff), 15);
        assert_eq!(trailing_ones_u32(0xffff_ffff), 32);
    }

    #[test]
    fn verify_masks() {
        assert_eq!(mask_at(0), 0b0000_0001);
        assert_eq!(mask_at(1), 0b0000_0010);
        assert_eq!(mask_at(2), 0b0000_0100);
        assert_eq!(mask_at(3), 0b0000_1000);
        assert_eq!(mask_at(4), 0b0001_0000);
        assert_eq!(mask_at(5), 0b0010_0000);
        assert_eq!(mask_at(6), 0b0100_0000);
        assert_eq!(mask_at(7), 0b1000_0000);

        assert_eq!(mask_upper(0), 0b1111_1110);
        assert_eq!(mask_upper(1), 0b1111_1100);
        assert_eq!(mask_upper(2), 0b1111_1000);
        assert_eq!(mask_upper(3), 0b1111_0000);
        assert_eq!(mask_upper(4), 0b1110_0000);
        assert_eq!(mask_upper(5), 0b1100_0000);
        assert_eq!(mask_upper(6), 0b1000_0000);
        assert_eq!(mask_upper(7), 0b0000_0000);

        assert_eq!(mask_upper_eq(0), 0b1111_1111);
        assert_eq!(mask_upper_eq(1), 0b1111_1110);
        assert_eq!(mask_upper_eq(2), 0b1111_1100);
        assert_eq!(mask_upper_eq(3), 0b1111_1000);
        assert_eq!(mask_upper_eq(4), 0b1111_0000);
        assert_eq!(mask_upper_eq(5), 0b1110_0000);
        assert_eq!(mask_upper_eq(6), 0b1100_0000);
        assert_eq!(mask_upper_eq(7), 0b1000_0000);

        assert_eq!(mask_lower(0), 0b0000_0000);
        assert_eq!(mask_lower(1), 0b0000_0001);
        assert_eq!(mask_lower(2), 0b0000_0011);
        assert_eq!(mask_lower(3), 0b0000_0111);
        assert_eq!(mask_lower(4), 0b0000_1111);
        assert_eq!(mask_lower(5), 0b0001_1111);
        assert_eq!(mask_lower(6), 0b0011_1111);
        assert_eq!(mask_lower(7), 0b0111_1111);

        assert_eq!(mask_lower_eq(0), 0b0000_0001);
        assert_eq!(mask_lower_eq(1), 0b0000_0011);
        assert_eq!(mask_lower_eq(2), 0b0000_0111);
        assert_eq!(mask_lower_eq(3), 0b0000_1111);
        assert_eq!(mask_lower_eq(4), 0b0001_1111);
        assert_eq!(mask_lower_eq(5), 0b0011_1111);
        assert_eq!(mask_lower_eq(6), 0b0111_1111);
        assert_eq!(mask_lower_eq(7), 0b1111_1111);

        assert_eq!(mask_range(0, 0), 0b0000_0000);
        assert_eq!(mask_range(1, 1), 0b0000_0000);
        assert_eq!(mask_range(7, 7), 0b0000_0000);
        assert_eq!(mask_range(1, 0), 0b0000_0001);
        assert_eq!(mask_range(2, 0), 0b0000_0011);
        assert_eq!(mask_range(7, 0), 0b0111_1111);
        assert_eq!(mask_range(5, 2), 0b0001_1100);
        assert_eq!(mask_range(7, 2), 0b0111_1100);
        assert_eq!(mask_range(8, 2), 0b1111_1100);
    }
}

pub mod clamp {
    //! Utilities for clamping numeric values to a defined range.

    /// Clamps the given value to the [0, 255] range.
    #[inline]
    pub fn clamp_u8(val: u16) -> u8 {
        if val & !0xff == 0 {
            val as u8
        }
        else {
            0xff
        }
    }

    /// Clamps the given value to the [-128, 127] range.
    #[inline]
    pub fn clamp_i8(val: i16) -> i8 {
        // Add 128 (0x80) to the given value, val, to make the i8 range of [-128,127] map to
        // [0,255]. Valid negative numbers are now positive so all bits above the 8th bit should be
        // 0. Check this by ANDing with 0xffffff00 (!0xff). If val wraps, the test is still valid as
        // it'll wrap around to the other numerical limit +/- 128, which is still well outside the
        // limits of an i8.
        if val.wrapping_add(0x80) & !0xff == 0 {
            val as i8
        }
        else {
            // The given value was determined to be outside the valid numerical range of i8.
            //
            // Shift right all the magnitude bits of val, leaving val to be either 0xff if val was
            // negative (sign bit was 1), or 0x00 if val was positive (sign bit was 0). Xor the
            // shift value with 0x7f (the positive limit) to obtain the appropriate numerical limit.
            //
            //  E.g., 0x7f ^ 0x00 = 0x7f (127)
            //  E.g., 0x7f ^ 0xff = 0x10 (-128)
            0x7f ^ val.wrapping_shr(15) as i8
        }
    }

    /// Clamps the given value to the [0, 65_535] range.
    #[inline]
    pub fn clamp_u16(val: u32) -> u16 {
        if val & !0xffff == 0 {
            val as u16
        }
        else {
            0xffff
        }
    }

    /// Clamps the given value to the [-32_767, 32_768] range.
    #[inline]
    pub fn clamp_i16(val: i32) -> i16 {
        if val.wrapping_add(0x8000) & !0xffff == 0 {
            val as i16
        }
        else {
            0x7fff ^ val.wrapping_shr(31) as i16
        }
    }

    /// Clamps the given value to the [0, 16_777_215] range.
    #[inline]
    pub fn clamp_u24(val: u32) -> u32 {
        if val & !0x00ff_ffff == 0 {
            val
        }
        else {
            0x00ff_ffff
        }
    }

    /// Clamps the given value to the [-8_388_608, 8_388_607] range.
    #[inline]
    pub fn clamp_i24(val: i32) -> i32 {
        if val.wrapping_add(0x0080_0000) & !0x00ff_ffff == 0 {
            val
        }
        else {
            0x007f_ffff ^ val.wrapping_shr(31)
        }
    }

    /// Clamps the given value to the [0, 4_294_967_295] range.
    #[inline]
    pub fn clamp_u32(val: u64) -> u32 {
        if val & !0xffff_ffff == 0 {
            val as u32
        }
        else {
            0xffff_ffff
        }
    }

    /// Clamps the given value to the [-2_147_483_648, 2_147_483_647] range.
    #[inline]
    pub fn clamp_i32(val: i64) -> i32 {
        if val.wrapping_add(0x8000_0000) & !0xffff_ffff == 0 {
            val as i32
        }
        else {
            0x7fff_ffff ^ val.wrapping_shr(63) as i32
        }
    }

    /// Clamps the given value to the [-1.0, 1.0] range.
    #[inline]
    pub fn clamp_f32(val: f32) -> f32 {
        // This slightly inelegant code simply returns min(max(1.0, val), -1.0). In release mode on
        // platforms with SSE2 support, it will compile down to 4 SSE instructions with no branches,
        // thereby making it the most performant clamping implementation for floating-point samples.
        let mut clamped = val;
        clamped = if clamped > 1.0 { 1.0 } else { clamped };
        clamped = if clamped < -1.0 { -1.0 } else { clamped };
        clamped
    }

    /// Clamps the given value to the [-1.0, 1.0] range.
    #[inline]
    pub fn clamp_f64(val: f64) -> f64 {
        let mut clamped = val;
        clamped = if clamped > 1.0 { 1.0 } else { clamped };
        clamped = if clamped < -1.0 { -1.0 } else { clamped };
        clamped
    }

    #[cfg(test)]
    mod tests {
        use super::*;
        use std::{i16, i32, i64, i8, u16, u32, u64, u8};

        #[test]
        fn verify_clamp() {
            assert_eq!(clamp_u8(256u16), u8::MAX);
            assert_eq!(clamp_u8(u16::MAX), u8::MAX);

            assert_eq!(clamp_i8(128i16), i8::MAX);
            assert_eq!(clamp_i8(-129i16), i8::MIN);
            assert_eq!(clamp_i8(i16::MAX), i8::MAX);
            assert_eq!(clamp_i8(i16::MIN), i8::MIN);

            assert_eq!(clamp_u16(65536u32), u16::MAX);
            assert_eq!(clamp_u16(u32::MAX), u16::MAX);

            assert_eq!(clamp_i16(32_768i32), i16::MAX);
            assert_eq!(clamp_i16(-32_769i32), i16::MIN);
            assert_eq!(clamp_i16(i32::MAX), i16::MAX);
            assert_eq!(clamp_i16(i32::MIN), i16::MIN);

            assert_eq!(clamp_u32(4_294_967_296u64), u32::MAX);
            assert_eq!(clamp_u32(u64::MAX), u32::MAX);

            assert_eq!(clamp_i32(2_147_483_648i64), i32::MAX);
            assert_eq!(clamp_i32(-2_147_483_649i64), i32::MIN);
            assert_eq!(clamp_i32(i64::MAX), i32::MAX);
            assert_eq!(clamp_i32(i64::MIN), i32::MIN);

            assert_eq!(clamp_f32(1.1), 1.0);
            assert_eq!(clamp_f32(5.6), 1.0);
            assert_eq!(clamp_f32(0.5), 0.5);
            assert_eq!(clamp_f32(-1.1), -1.0);
            assert_eq!(clamp_f32(-5.6), -1.0);
            assert_eq!(clamp_f32(-0.5), -0.5);

            assert_eq!(clamp_f64(1.1), 1.0);
            assert_eq!(clamp_f64(5.6), 1.0);
            assert_eq!(clamp_f64(0.5), 0.5);
            assert_eq!(clamp_f64(-1.1), -1.0);
            assert_eq!(clamp_f64(-5.6), -1.0);
            assert_eq!(clamp_f64(-0.5), -0.5);
        }
    }
}