1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
Copyright 2017 Takashi Ogura
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
use std::fmt;
use na::{DVector, Isometry3, RealField, Vector3, Vector6};
use nalgebra as na;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use simba::scalar::SubsetOf;
use super::chain::*;
use super::errors::*;
use super::funcs::*;
/// From 'Humanoid Robot (Kajita)' P.64
fn calc_pose_diff<T>(a: &Isometry3<T>, b: &Isometry3<T>) -> Vector6<T>
where
T: RealField,
{
let p_diff = a.translation.vector.clone() - b.translation.vector.clone();
let w_diff = b.rotation.rotation_to(&a.rotation).scaled_axis();
Vector6::new(
p_diff[0].clone(),
p_diff[1].clone(),
p_diff[2].clone(),
w_diff[0].clone(),
w_diff[1].clone(),
w_diff[2].clone(),
)
}
fn calc_pose_diff_with_constraints<T>(
a: &Isometry3<T>,
b: &Isometry3<T>,
operational_space: [bool; 6],
) -> DVector<T>
where
T: RealField,
{
let full_diff = calc_pose_diff(a, b);
let use_dof = operational_space.iter().filter(|x| **x).count();
let mut diff = DVector::from_element(use_dof, na::zero());
let mut index = 0;
for (i, use_i) in operational_space.iter().enumerate() {
if *use_i {
diff[index] = full_diff[i].clone();
index += 1;
}
}
diff
}
/// A bundle of flags determining which coordinates are constrained for a target
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Constraints {
/// true means the constraint is used.
/// The coordinates is the world, not the end of the arm.
#[cfg_attr(feature = "serde", serde(default = "default_true"))]
pub position_x: bool,
#[cfg_attr(feature = "serde", serde(default = "default_true"))]
pub position_y: bool,
#[cfg_attr(feature = "serde", serde(default = "default_true"))]
pub position_z: bool,
#[cfg_attr(feature = "serde", serde(default = "default_true"))]
pub rotation_x: bool,
#[cfg_attr(feature = "serde", serde(default = "default_true"))]
pub rotation_y: bool,
#[cfg_attr(feature = "serde", serde(default = "default_true"))]
pub rotation_z: bool,
#[cfg_attr(feature = "serde", serde(default))]
pub ignored_joint_names: Vec<String>,
}
fn default_true() -> bool {
true
}
impl Default for Constraints {
/// Initialize with all true
///
/// ```
/// let c = k::Constraints::default();
/// assert!(c.position_x);
/// assert!(c.position_y);
/// assert!(c.position_z);
/// assert!(c.rotation_x);
/// assert!(c.rotation_y);
/// assert!(c.rotation_z);
/// assert!(c.ignored_joint_names.is_empty());
/// ```
fn default() -> Self {
Self {
position_x: default_true(),
position_y: default_true(),
position_z: default_true(),
rotation_x: default_true(),
rotation_y: default_true(),
rotation_z: default_true(),
ignored_joint_names: Default::default(),
}
}
}
fn define_operational_space(constraints: &Constraints) -> [bool; 6] {
let mut arr = [true; 6];
arr[0] = constraints.position_x;
arr[1] = constraints.position_y;
arr[2] = constraints.position_z;
arr[3] = constraints.rotation_x;
arr[4] = constraints.rotation_y;
arr[5] = constraints.rotation_z;
arr
}
/// IK solver
pub trait InverseKinematicsSolver<T>
where
T: RealField,
{
/// Move the end transform of the `arm` to `target_pose`
fn solve(&self, arm: &SerialChain<T>, target_pose: &Isometry3<T>) -> Result<(), Error> {
self.solve_with_constraints(arm, target_pose, &Constraints::default())
}
/// Move the end transform of the `arm` to `target_pose` with constraints
fn solve_with_constraints(
&self,
arm: &SerialChain<T>,
target_pose: &Isometry3<T>,
constraints: &Constraints,
) -> Result<(), Error>;
}
/// Inverse Kinematics Solver using Jacobian matrix
pub struct JacobianIkSolver<T: RealField> {
/// If the distance is smaller than this value, it is reached.
pub allowable_target_distance: T,
/// If the angle distance is smaller than this value, it is reached.
pub allowable_target_angle: T,
/// multiplier for jacobian
pub jacobian_multiplier: T,
/// How many times the joints are tried to be moved
pub num_max_try: usize,
/// Nullspace function for a redundant system
#[allow(clippy::type_complexity)]
nullspace_function: Option<Box<dyn Fn(&[T]) -> Vec<T> + Send + Sync>>,
}
impl<T> JacobianIkSolver<T>
where
T: RealField + SubsetOf<f64>,
{
/// Create instance of `JacobianIkSolver`.
///
/// `JacobianIkSolverBuilder` is available instead of calling this `new` method.
///
/// # Examples
///
/// ```
/// let solver = k::JacobianIkSolver::new(0.01, 0.01, 0.5, 100);
/// ```
pub fn new(
allowable_target_distance: T,
allowable_target_angle: T,
jacobian_multiplier: T,
num_max_try: usize,
) -> JacobianIkSolver<T> {
JacobianIkSolver {
allowable_target_distance,
allowable_target_angle,
jacobian_multiplier,
num_max_try,
nullspace_function: None,
}
}
/// Set a null space function for redundant manipulator.
///
/// # Examples
///
/// ```
/// let mut solver = k::JacobianIkSolver::new(0.01, 0.01, 0.5, 100);
/// solver.set_nullspace_function(Box::new(
/// k::create_reference_positions_nullspace_function(
/// vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
/// vec![0.1, 0.1, 0.1, 1.0, 0.1, 0.5, 0.0],
/// ),
/// ));
/// ```
#[allow(clippy::type_complexity)]
pub fn set_nullspace_function(&mut self, func: Box<dyn Fn(&[T]) -> Vec<T> + Send + Sync>) {
self.nullspace_function = Some(func);
}
/// Clear the null function which is set by `set_nullspace_function`.
pub fn clear_nullspace_function(&mut self) {
self.nullspace_function = None;
}
fn add_positions_with_multiplier(&self, input: &[T], add_values: &[T]) -> Vec<T> {
input
.iter()
.zip(add_values.iter())
.map(|(ang, add)| ang.clone() + self.jacobian_multiplier.clone() * add.clone())
.collect()
}
fn solve_one_loop_with_constraints(
&self,
arm: &SerialChain<T>,
target_pose: &Isometry3<T>,
operational_space: &[bool; 6],
ignored_joint_indices: &[usize],
) -> Result<DVector<T>, Error> {
let required_dof = operational_space.iter().filter(|x| **x).count();
let orig_positions = arm.joint_positions();
let available_dof = arm.dof() - ignored_joint_indices.len();
let t_n = arm.end_transform();
let err = calc_pose_diff_with_constraints(target_pose, &t_n, *operational_space);
let mut jacobi = jacobian(arm);
let mut num_removed_rows = 0;
for (i, use_i) in operational_space.iter().enumerate() {
if !use_i {
jacobi = jacobi.remove_row(i - num_removed_rows);
num_removed_rows += 1;
}
}
for (i, joint_index) in ignored_joint_indices.iter().enumerate() {
jacobi = jacobi.remove_column(*joint_index - i);
}
let positions_vec = if available_dof > required_dof {
const EPS: f64 = 0.0001;
// redundant: pseudo inverse
match self.nullspace_function {
Some(ref f) => {
let jacobi_inv = jacobi.clone().pseudo_inverse(na::convert(EPS)).unwrap();
let mut subtask = na::DVector::from_vec(f(&orig_positions));
for (i, joint_index) in ignored_joint_indices.iter().enumerate() {
subtask = subtask.remove_row(*joint_index - i);
}
let mut d_q = jacobi_inv.clone() * err
+ (na::DMatrix::identity(available_dof, available_dof)
- jacobi_inv * jacobi)
* subtask;
for joint_index in ignored_joint_indices {
d_q = d_q.insert_row(*joint_index, T::zero());
}
self.add_positions_with_multiplier(&orig_positions, d_q.as_slice())
}
None => {
let mut d_q = jacobi
.svd(true, true)
.solve(&err, na::convert(EPS))
.unwrap();
for joint_index in ignored_joint_indices {
d_q = d_q.insert_row(*joint_index, T::zero());
}
self.add_positions_with_multiplier(&orig_positions, d_q.as_slice())
}
}
} else {
// normal inverse matrix
self.add_positions_with_multiplier(
&orig_positions,
jacobi
.lu()
.solve(&err)
.ok_or(Error::InverseMatrixError)?
.as_slice(),
)
};
arm.set_joint_positions_clamped(&positions_vec);
Ok(calc_pose_diff_with_constraints(
target_pose,
&arm.end_transform(),
*operational_space,
))
}
fn solve_with_constraints_internal(
&self,
arm: &SerialChain<T>,
target_pose: &Isometry3<T>,
constraints: &Constraints,
) -> Result<(), Error> {
let operational_space = define_operational_space(constraints);
let required_dof = operational_space.iter().filter(|x| **x).count();
let orig_positions = arm.joint_positions();
let available_dof = arm.dof() - constraints.ignored_joint_names.len();
if available_dof < required_dof {
return Err(Error::PreconditionError {
dof: available_dof,
necessary_dof: required_dof,
});
}
let mut ignored_joint_indices = Vec::new();
for joint_name in &constraints.ignored_joint_names {
// Try to get joint index
match arm.iter_joints().position(|x| x.name == *joint_name) {
Some(index) => {
ignored_joint_indices.push(index);
}
None => {
return Err(Error::InvalidJointNameError {
joint_name: joint_name.to_string(),
});
}
}
}
ignored_joint_indices.sort_unstable();
let mut last_target_distance = None;
for _ in 0..self.num_max_try {
let target_diff = self.solve_one_loop_with_constraints(
arm,
target_pose,
&operational_space,
&ignored_joint_indices,
)?;
let (len_diff, rot_diff) = target_diff_to_len_rot_diff(&target_diff, operational_space);
if len_diff.norm() < self.allowable_target_distance
&& rot_diff.norm() < self.allowable_target_angle
{
let non_checked_positions = arm.joint_positions();
arm.set_joint_positions_clamped(&non_checked_positions);
return Ok(());
}
last_target_distance = Some((len_diff, rot_diff));
}
arm.set_joint_positions(&orig_positions)?;
Err(Error::NotConvergedError {
num_tried: self.num_max_try,
position_diff: na::try_convert(last_target_distance.as_ref().unwrap().0.clone())
.unwrap_or_default(),
rotation_diff: na::try_convert(last_target_distance.as_ref().unwrap().1.clone())
.unwrap_or_default(),
})
}
}
impl<T: RealField + fmt::Debug> fmt::Debug for JacobianIkSolver<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("JacobianIkSolver")
.field("allowable_target_distance", &self.allowable_target_distance)
.field("allowable_target_angle", &self.allowable_target_angle)
.field("jacobian_multiplier", &self.jacobian_multiplier)
.field("num_max_try", &self.num_max_try)
.field("has_nullspace_function", &self.nullspace_function.is_some())
.finish()
}
}
fn target_diff_to_len_rot_diff<T>(
target_diff: &DVector<T>,
operational_space: [bool; 6],
) -> (Vector3<T>, Vector3<T>)
where
T: RealField,
{
let mut len_diff = Vector3::zeros();
let mut index = 0;
for i in 0..3 {
if operational_space[i] {
len_diff[i] = target_diff[index].clone();
index += 1;
}
}
let mut rot_diff = Vector3::zeros();
for i in 0..3 {
if operational_space[i + 3] {
rot_diff[i] = target_diff[index].clone();
index += 1;
}
}
(len_diff, rot_diff)
}
impl<T> InverseKinematicsSolver<T> for JacobianIkSolver<T>
where
T: RealField + SubsetOf<f64>,
{
/// Set joint positions of `arm` to reach the `target_pose`
///
/// # Examples
///
/// ```
/// use k::prelude::*;
///
/// let chain = k::Chain::<f32>::from_urdf_file("urdf/sample.urdf").unwrap();
/// // Create sub-`Chain` to make it easy to use inverse kinematics
/// let target_joint_name = "r_wrist_pitch";
/// let r_wrist = chain.find(target_joint_name).unwrap();
/// let mut arm = k::SerialChain::from_end(r_wrist);
/// println!("arm: {arm}");
///
/// // Set joint positions of `arm`
/// let positions = vec![0.1, 0.2, 0.0, -0.5, 0.0, -0.3];
/// arm.set_joint_positions(&positions).unwrap();
/// println!("initial positions={:?}", arm.joint_positions());
///
/// // Get the transform of the end of the manipulator (forward kinematics)
/// let mut target = arm.update_transforms().last().unwrap().clone();
///
/// println!("initial target pos = {}", target.translation);
/// println!("move x: -0.1");
/// target.translation.vector.x -= 0.1;
///
/// // Create IK solver with default settings
/// let solver = k::JacobianIkSolver::default();
///
/// // solve and move the manipulator positions
/// solver.solve(&arm, &target).unwrap();
/// println!("solved positions={:?}", arm.joint_positions());
/// ```
fn solve(&self, arm: &SerialChain<T>, target_pose: &Isometry3<T>) -> Result<(), Error> {
self.solve_with_constraints(arm, target_pose, &Constraints::default())
}
/// Set joint positions of `arm` to reach the `target_pose` with constraints
///
/// If you want to loose the constraints, use this method.
/// For example, ignoring rotation with an axis.
/// It enables to use the arms which has less than six DoF.
///
/// # Example
///
/// ```
/// use k::prelude::*;
///
/// let chain = k::Chain::<f32>::from_urdf_file("urdf/sample.urdf").unwrap();
/// let target_joint_name = "r_wrist_pitch";
/// let r_wrist = chain.find(target_joint_name).unwrap();
/// let mut arm = k::SerialChain::from_end(r_wrist);
/// let positions = vec![0.1, 0.2, 0.0, -0.5, 0.0, -0.3];
/// arm.set_joint_positions(&positions).unwrap();
/// let mut target = arm.update_transforms().last().unwrap().clone();
/// target.translation.vector.x -= 0.1;
/// let solver = k::JacobianIkSolver::default();
///
/// let mut constraints = k::Constraints::default();
/// constraints.rotation_x = false;
/// constraints.rotation_z = false;
/// solver
/// .solve_with_constraints(&arm, &target, &constraints)
/// .unwrap_or_else(|err| {
/// println!("Err: {err}");
/// });
/// ```
fn solve_with_constraints(
&self,
arm: &SerialChain<T>,
target_pose: &Isometry3<T>,
constraints: &Constraints,
) -> Result<(), Error> {
let orig_positions = arm.joint_positions();
let re = self.solve_with_constraints_internal(arm, target_pose, constraints);
if re.is_err() {
arm.set_joint_positions(&orig_positions)?;
};
re
}
}
impl<T> Default for JacobianIkSolver<T>
where
T: RealField + SubsetOf<f64>,
{
fn default() -> Self {
Self::new(na::convert(0.001), na::convert(0.005), na::convert(0.5), 10)
}
}
/// Utility function to create nullspace function using reference joint positions.
/// This is just an example to use nullspace.
///
/// H(q) = 1/2(q-q^)T W (q-q^)
/// dH(q) / dq = W (q-q^)
///
/// <https://minus9d.hatenablog.com/entry/20120912/1347460308>
pub fn create_reference_positions_nullspace_function<T: RealField>(
reference_positions: Vec<T>,
weight_vector: Vec<T>,
) -> impl Fn(&[T]) -> Vec<T> {
let dof = reference_positions.len();
assert_eq!(dof, weight_vector.len());
move |positions| {
let mut derivative_vec = vec![na::convert(0.0); dof];
for i in 0..dof {
derivative_vec[i] =
weight_vector[i].clone() * (positions[i].clone() - reference_positions[i].clone());
}
derivative_vec
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(target_family = "wasm")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
fn test_nullspace_func() {
let f = create_reference_positions_nullspace_function(vec![0.0, 1.0], vec![0.5, 0.1]);
let pos1 = vec![0.5, 0.5];
let values = f(&pos1);
assert_eq!(values.len(), 2);
assert!((values[0] - 0.25f64).abs() < f64::EPSILON);
assert!((values[1] - (-0.05f64)).abs() < f64::EPSILON);
}
}