image/flat.rs
1//! Image representations for ffi.
2//!
3//! # Usage
4//!
5//! Imagine you want to offer a very simple ffi interface: The caller provides an image buffer and
6//! your program creates a thumbnail from it and dumps that image as `png`. This module is designed
7//! to help you transition from raw memory data to Rust representation.
8//!
9//! ```no_run
10//! use std::ptr;
11//! use std::slice;
12//! use image::Rgb;
13//! use image::flat::{FlatSamples, SampleLayout};
14//! use image::imageops::thumbnail;
15//!
16//! #[no_mangle]
17//! pub extern "C" fn store_rgb8_compressed(
18//! data: *const u8, len: usize,
19//! layout: *const SampleLayout
20//! )
21//! -> bool
22//! {
23//! let samples = unsafe { slice::from_raw_parts(data, len) };
24//! let layout = unsafe { ptr::read(layout) };
25//!
26//! let buffer = FlatSamples {
27//! samples,
28//! layout,
29//! color_hint: None,
30//! };
31//!
32//! let view = match buffer.as_view::<Rgb<u8>>() {
33//! Err(_) => return false, // Invalid layout.
34//! Ok(view) => view,
35//! };
36//!
37//! thumbnail(&view, 64, 64)
38//! .save("output.png")
39//! .map(|_| true)
40//! .unwrap_or_else(|_| false)
41//! }
42//! ```
43//!
44use std::marker::PhantomData;
45use std::ops::{Deref, Index, IndexMut};
46use std::{cmp, error, fmt};
47
48use num_traits::Zero;
49
50use crate::color::ColorType;
51use crate::error::{
52 DecodingError, ImageError, ImageFormatHint, ParameterError, ParameterErrorKind,
53 UnsupportedError, UnsupportedErrorKind,
54};
55use crate::image::{GenericImage, GenericImageView};
56use crate::traits::Pixel;
57use crate::ImageBuffer;
58
59/// A flat buffer over a (multi channel) image.
60///
61/// In contrast to `ImageBuffer`, this representation of a sample collection is much more lenient
62/// in the layout thereof. It also allows grouping by color planes instead of by pixel as long as
63/// the strides of each extent are constant. This struct itself has no invariants on the strides
64/// but not every possible configuration can be interpreted as a [`GenericImageView`] or
65/// [`GenericImage`]. The methods [`as_view`] and [`as_view_mut`] construct the actual implementors
66/// of these traits and perform necessary checks. To manually perform this and other layout checks
67/// use [`is_normal`] or [`has_aliased_samples`].
68///
69/// Instances can be constructed not only by hand. The buffer instances returned by library
70/// functions such as [`ImageBuffer::as_flat_samples`] guarantee that the conversion to a generic
71/// image or generic view succeeds. A very different constructor is [`with_monocolor`]. It uses a
72/// single pixel as the backing storage for an arbitrarily sized read-only raster by mapping each
73/// pixel to the same samples by setting some strides to `0`.
74///
75/// [`GenericImage`]: ../trait.GenericImage.html
76/// [`GenericImageView`]: ../trait.GenericImageView.html
77/// [`ImageBuffer::as_flat_samples`]: ../struct.ImageBuffer.html#method.as_flat_samples
78/// [`is_normal`]: #method.is_normal
79/// [`has_aliased_samples`]: #method.has_aliased_samples
80/// [`as_view`]: #method.as_view
81/// [`as_view_mut`]: #method.as_view_mut
82/// [`with_monocolor`]: #method.with_monocolor
83#[derive(Clone, Debug)]
84pub struct FlatSamples<Buffer> {
85 /// Underlying linear container holding sample values.
86 pub samples: Buffer,
87
88 /// A `repr(C)` description of the layout of buffer samples.
89 pub layout: SampleLayout,
90
91 /// Supplementary color information.
92 ///
93 /// You may keep this as `None` in most cases. This is NOT checked in `View` or other
94 /// converters. It is intended mainly as a way for types that convert to this buffer type to
95 /// attach their otherwise static color information. A dynamic image representation could
96 /// however use this to resolve representational ambiguities such as the order of RGB channels.
97 pub color_hint: Option<ColorType>,
98}
99
100/// A ffi compatible description of a sample buffer.
101#[repr(C)]
102#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
103pub struct SampleLayout {
104 /// The number of channels in the color representation of the image.
105 pub channels: u8,
106
107 /// Add this to an index to get to the sample in the next channel.
108 pub channel_stride: usize,
109
110 /// The width of the represented image.
111 pub width: u32,
112
113 /// Add this to an index to get to the next sample in x-direction.
114 pub width_stride: usize,
115
116 /// The height of the represented image.
117 pub height: u32,
118
119 /// Add this to an index to get to the next sample in y-direction.
120 pub height_stride: usize,
121}
122
123/// Helper struct for an unnamed (stride, length) pair.
124#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
125struct Dim(usize, usize);
126
127impl SampleLayout {
128 /// Describe a row-major image packed in all directions.
129 ///
130 /// The resulting will surely be `NormalForm::RowMajorPacked`. It can therefore be converted to
131 /// safely to an `ImageBuffer` with a large enough underlying buffer.
132 ///
133 /// ```
134 /// # use image::flat::{NormalForm, SampleLayout};
135 /// let layout = SampleLayout::row_major_packed(3, 640, 480);
136 /// assert!(layout.is_normal(NormalForm::RowMajorPacked));
137 /// ```
138 ///
139 /// # Panics
140 ///
141 /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
142 /// in the `height` direction would be larger than `usize::MAX`. On other platforms
143 /// where it can surely accommodate `u8::MAX * u32::MAX`, this can never happen.
144 #[must_use]
145 pub fn row_major_packed(channels: u8, width: u32, height: u32) -> Self {
146 let height_stride = (channels as usize).checked_mul(width as usize).expect(
147 "Row major packed image can not be described because it does not fit into memory",
148 );
149 SampleLayout {
150 channels,
151 channel_stride: 1,
152 width,
153 width_stride: channels as usize,
154 height,
155 height_stride,
156 }
157 }
158
159 /// Describe a column-major image packed in all directions.
160 ///
161 /// The resulting will surely be `NormalForm::ColumnMajorPacked`. This is not particularly
162 /// useful for conversion but can be used to describe such a buffer without pitfalls.
163 ///
164 /// ```
165 /// # use image::flat::{NormalForm, SampleLayout};
166 /// let layout = SampleLayout::column_major_packed(3, 640, 480);
167 /// assert!(layout.is_normal(NormalForm::ColumnMajorPacked));
168 /// ```
169 ///
170 /// # Panics
171 ///
172 /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
173 /// in the `width` direction would be larger than `usize::MAX`. On other platforms
174 /// where it can surely accommodate `u8::MAX * u32::MAX`, this can never happen.
175 #[must_use]
176 pub fn column_major_packed(channels: u8, width: u32, height: u32) -> Self {
177 let width_stride = (channels as usize).checked_mul(height as usize).expect(
178 "Column major packed image can not be described because it does not fit into memory",
179 );
180 SampleLayout {
181 channels,
182 channel_stride: 1,
183 height,
184 height_stride: channels as usize,
185 width,
186 width_stride,
187 }
188 }
189
190 /// Get the strides for indexing matrix-like `[(c, w, h)]`.
191 ///
192 /// For a row-major layout with grouped samples, this tuple is strictly
193 /// increasing.
194 #[must_use]
195 pub fn strides_cwh(&self) -> (usize, usize, usize) {
196 (self.channel_stride, self.width_stride, self.height_stride)
197 }
198
199 /// Get the dimensions `(channels, width, height)`.
200 ///
201 /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
202 /// before width and height.
203 #[must_use]
204 pub fn extents(&self) -> (usize, usize, usize) {
205 (
206 self.channels as usize,
207 self.width as usize,
208 self.height as usize,
209 )
210 }
211
212 /// Tuple of bounds in the order of coordinate inputs.
213 ///
214 /// This function should be used whenever working with image coordinates opposed to buffer
215 /// coordinates. The only difference compared to `extents` is the output type.
216 #[must_use]
217 pub fn bounds(&self) -> (u8, u32, u32) {
218 (self.channels, self.width, self.height)
219 }
220
221 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
222 ///
223 /// This method will allow zero strides, allowing compact representations of monochrome images.
224 /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
225 /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
226 /// other cases, the reasoning is slightly more involved.
227 ///
228 /// # Explanation
229 ///
230 /// Note that there is a difference between `min_length` and the index of the sample
231 /// 'one-past-the-end'. This is due to strides that may be larger than the dimension below.
232 ///
233 /// ## Example with holes
234 ///
235 /// Let's look at an example of a grayscale image with
236 /// * `width_stride = 1`
237 /// * `width = 2`
238 /// * `height_stride = 3`
239 /// * `height = 2`
240 ///
241 /// ```text
242 /// | x x | x x m | $
243 /// min_length m ^
244 /// ^ one-past-the-end $
245 /// ```
246 ///
247 /// The difference is also extreme for empty images with large strides. The one-past-the-end
248 /// sample index is still as large as the largest of these strides while `min_length = 0`.
249 ///
250 /// ## Example with aliasing
251 ///
252 /// The concept gets even more important when you allow samples to alias each other. Here we
253 /// have the buffer of a small grayscale image where this is the case, this time we will first
254 /// show the buffer and then the individual rows below.
255 ///
256 /// * `width_stride = 1`
257 /// * `width = 3`
258 /// * `height_stride = 2`
259 /// * `height = 2`
260 ///
261 /// ```text
262 /// 1 2 3 4 5 m
263 /// |1 2 3| row one
264 /// |3 4 5| row two
265 /// ^ m min_length
266 /// ^ ??? one-past-the-end
267 /// ```
268 ///
269 /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
270 /// dimension. That still points inside the image because `height*height_stride = 4` but also
271 /// `index_of(1, 2) = 4`.
272 #[must_use]
273 pub fn min_length(&self) -> Option<usize> {
274 if self.width == 0 || self.height == 0 || self.channels == 0 {
275 return Some(0);
276 }
277
278 self.index(self.channels - 1, self.width - 1, self.height - 1)
279 .and_then(|idx| idx.checked_add(1))
280 }
281
282 /// Check if a buffer of length `len` is large enough.
283 #[must_use]
284 pub fn fits(&self, len: usize) -> bool {
285 self.min_length().is_some_and(|min| len >= min)
286 }
287
288 /// The extents of this array, in order of increasing strides.
289 fn increasing_stride_dims(&self) -> [Dim; 3] {
290 // Order extents by strides, then check that each is less equal than the next stride.
291 let mut grouped: [Dim; 3] = [
292 Dim(self.channel_stride, self.channels as usize),
293 Dim(self.width_stride, self.width as usize),
294 Dim(self.height_stride, self.height as usize),
295 ];
296
297 grouped.sort();
298
299 let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
300 assert!(min_dim.stride() <= mid_dim.stride() && mid_dim.stride() <= max_dim.stride());
301
302 grouped
303 }
304
305 /// If there are any samples aliasing each other.
306 ///
307 /// If this is not the case, it would always be safe to allow mutable access to two different
308 /// samples at the same time. Otherwise, this operation would need additional checks. When one
309 /// dimension overflows `usize` with its stride we also consider this aliasing.
310 #[must_use]
311 pub fn has_aliased_samples(&self) -> bool {
312 let grouped = self.increasing_stride_dims();
313 let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
314
315 let min_size = match min_dim.checked_len() {
316 None => return true,
317 Some(size) => size,
318 };
319
320 let mid_size = match mid_dim.checked_len() {
321 None => return true,
322 Some(size) => size,
323 };
324
325 if max_dim.checked_len().is_none() {
326 return true;
327 };
328
329 // Each higher dimension must walk over all of one lower dimension.
330 min_size > mid_dim.stride() || mid_size > max_dim.stride()
331 }
332
333 /// Check if a buffer fulfills the requirements of a normal form.
334 ///
335 /// Certain conversions have preconditions on the structure of the sample buffer that are not
336 /// captured (by design) by the type system. These are then checked before the conversion. Such
337 /// checks can all be done in constant time and will not inspect the buffer content. You can
338 /// perform these checks yourself when the conversion is not required at this moment but maybe
339 /// still performed later.
340 #[must_use]
341 pub fn is_normal(&self, form: NormalForm) -> bool {
342 if self.has_aliased_samples() {
343 return false;
344 }
345
346 if form >= NormalForm::PixelPacked && self.channel_stride != 1 {
347 return false;
348 }
349
350 if form >= NormalForm::ImagePacked {
351 // has aliased already checked for overflows.
352 let grouped = self.increasing_stride_dims();
353 let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
354
355 if 1 != min_dim.stride() {
356 return false;
357 }
358
359 if min_dim.len() != mid_dim.stride() {
360 return false;
361 }
362
363 if mid_dim.len() != max_dim.stride() {
364 return false;
365 }
366 }
367
368 if form >= NormalForm::RowMajorPacked {
369 if self.width_stride != self.channels as usize {
370 return false;
371 }
372
373 if self.width as usize * self.width_stride != self.height_stride {
374 return false;
375 }
376 }
377
378 if form >= NormalForm::ColumnMajorPacked {
379 if self.height_stride != self.channels as usize {
380 return false;
381 }
382
383 if self.height as usize * self.height_stride != self.width_stride {
384 return false;
385 }
386 }
387
388 true
389 }
390
391 /// Check that the pixel and the channel index are in bounds.
392 ///
393 /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
394 /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
395 /// actually exists in memory, this property of course follows.
396 #[must_use]
397 pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
398 channel < self.channels && x < self.width && y < self.height
399 }
400
401 /// Resolve the index of a particular sample.
402 ///
403 /// `None` if the index is outside the bounds or does not fit into a `usize`.
404 #[must_use]
405 pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
406 if !self.in_bounds(channel, x, y) {
407 return None;
408 }
409
410 self.index_ignoring_bounds(channel as usize, x as usize, y as usize)
411 }
412
413 /// Get the theoretical position of sample (channel, x, y).
414 ///
415 /// The 'check' is for overflow during index calculation, not that it is contained in the
416 /// image. Two samples may return the same index, even when one of them is out of bounds. This
417 /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
418 #[must_use]
419 pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
420 let idx_c = channel.checked_mul(self.channel_stride);
421 let idx_x = x.checked_mul(self.width_stride);
422 let idx_y = y.checked_mul(self.height_stride);
423
424 let (Some(idx_c), Some(idx_x), Some(idx_y)) = (idx_c, idx_x, idx_y) else {
425 return None;
426 };
427
428 Some(0usize)
429 .and_then(|b| b.checked_add(idx_c))
430 .and_then(|b| b.checked_add(idx_x))
431 .and_then(|b| b.checked_add(idx_y))
432 }
433
434 /// Get an index provided it is inbouds.
435 ///
436 /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
437 /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
438 /// way, this method can not be unsafe.
439 ///
440 /// Behavior is *unspecified* if the index is out of bounds or this sample layout would require
441 /// a buffer larger than `isize::MAX` bytes.
442 #[must_use]
443 pub fn in_bounds_index(&self, c: u8, x: u32, y: u32) -> usize {
444 let (c_stride, x_stride, y_stride) = self.strides_cwh();
445 (y as usize * y_stride) + (x as usize * x_stride) + (c as usize * c_stride)
446 }
447
448 /// Shrink the image to the minimum of current and given extents.
449 ///
450 /// This does not modify the strides, so that the resulting sample buffer may have holes
451 /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
452 /// samples had aliased each other before.
453 pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
454 self.channels = self.channels.min(channels);
455 self.width = self.width.min(width);
456 self.height = self.height.min(height);
457 }
458}
459
460impl Dim {
461 fn stride(self) -> usize {
462 self.0
463 }
464
465 /// Length of this dimension in memory.
466 fn checked_len(self) -> Option<usize> {
467 self.0.checked_mul(self.1)
468 }
469
470 fn len(self) -> usize {
471 self.0 * self.1
472 }
473}
474
475impl<Buffer> FlatSamples<Buffer> {
476 /// Get the strides for indexing matrix-like `[(c, w, h)]`.
477 ///
478 /// For a row-major layout with grouped samples, this tuple is strictly
479 /// increasing.
480 pub fn strides_cwh(&self) -> (usize, usize, usize) {
481 self.layout.strides_cwh()
482 }
483
484 /// Get the dimensions `(channels, width, height)`.
485 ///
486 /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
487 /// before width and height.
488 pub fn extents(&self) -> (usize, usize, usize) {
489 self.layout.extents()
490 }
491
492 /// Tuple of bounds in the order of coordinate inputs.
493 ///
494 /// This function should be used whenever working with image coordinates opposed to buffer
495 /// coordinates. The only difference compared to `extents` is the output type.
496 pub fn bounds(&self) -> (u8, u32, u32) {
497 self.layout.bounds()
498 }
499
500 /// Get a reference based version.
501 pub fn as_ref<T>(&self) -> FlatSamples<&[T]>
502 where
503 Buffer: AsRef<[T]>,
504 {
505 FlatSamples {
506 samples: self.samples.as_ref(),
507 layout: self.layout,
508 color_hint: self.color_hint,
509 }
510 }
511
512 /// Get a mutable reference based version.
513 pub fn as_mut<T>(&mut self) -> FlatSamples<&mut [T]>
514 where
515 Buffer: AsMut<[T]>,
516 {
517 FlatSamples {
518 samples: self.samples.as_mut(),
519 layout: self.layout,
520 color_hint: self.color_hint,
521 }
522 }
523
524 /// Copy the data into an owned vector.
525 pub fn to_vec<T>(&self) -> FlatSamples<Vec<T>>
526 where
527 T: Clone,
528 Buffer: AsRef<[T]>,
529 {
530 FlatSamples {
531 samples: self.samples.as_ref().to_vec(),
532 layout: self.layout,
533 color_hint: self.color_hint,
534 }
535 }
536
537 /// Get a reference to a single sample.
538 ///
539 /// This more restrictive than the method based on `std::ops::Index` but guarantees to properly
540 /// check all bounds and not panic as long as `Buffer::as_ref` does not do so.
541 ///
542 /// ```
543 /// # use image::{RgbImage};
544 /// let flat = RgbImage::new(480, 640).into_flat_samples();
545 ///
546 /// // Get the blue channel at (10, 10).
547 /// assert!(flat.get_sample(1, 10, 10).is_some());
548 ///
549 /// // There is no alpha channel.
550 /// assert!(flat.get_sample(3, 10, 10).is_none());
551 /// ```
552 ///
553 /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
554 /// bounds checks with `min_length` in a type similar to `View`. Then you may use
555 /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
556 /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
557 /// coordinate is in fact backed by any memory buffer.
558 pub fn get_sample<T>(&self, channel: u8, x: u32, y: u32) -> Option<&T>
559 where
560 Buffer: AsRef<[T]>,
561 {
562 self.index(channel, x, y)
563 .and_then(|idx| self.samples.as_ref().get(idx))
564 }
565
566 /// Get a mutable reference to a single sample.
567 ///
568 /// This more restrictive than the method based on `std::ops::IndexMut` but guarantees to
569 /// properly check all bounds and not panic as long as `Buffer::as_ref` does not do so.
570 /// Contrary to conversion to `ViewMut`, this does not require that samples are packed since it
571 /// does not need to convert samples to a color representation.
572 ///
573 /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
574 /// here can in fact modify more than the coordinate in the argument.
575 ///
576 /// ```
577 /// # use image::{RgbImage};
578 /// let mut flat = RgbImage::new(480, 640).into_flat_samples();
579 ///
580 /// // Assign some new color to the blue channel at (10, 10).
581 /// *flat.get_mut_sample(1, 10, 10).unwrap() = 255;
582 ///
583 /// // There is no alpha channel.
584 /// assert!(flat.get_mut_sample(3, 10, 10).is_none());
585 /// ```
586 ///
587 /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
588 /// bounds checks with `min_length` in a type similar to `View`. Then you may use
589 /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
590 /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
591 /// coordinate is in fact backed by any memory buffer.
592 pub fn get_mut_sample<T>(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut T>
593 where
594 Buffer: AsMut<[T]>,
595 {
596 match self.index(channel, x, y) {
597 None => None,
598 Some(idx) => self.samples.as_mut().get_mut(idx),
599 }
600 }
601
602 /// View this buffer as an image over some type of pixel.
603 ///
604 /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
605 /// buffer. It also checks that the specified pixel format expects the same number of channels
606 /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
607 /// There is no automatic conversion.
608 pub fn as_view<P>(&self) -> Result<View<&[P::Subpixel], P>, Error>
609 where
610 P: Pixel,
611 Buffer: AsRef<[P::Subpixel]>,
612 {
613 if self.layout.channels != P::CHANNEL_COUNT {
614 return Err(Error::ChannelCountMismatch(
615 self.layout.channels,
616 P::CHANNEL_COUNT,
617 ));
618 }
619
620 let as_ref = self.samples.as_ref();
621 if !self.layout.fits(as_ref.len()) {
622 return Err(Error::TooLarge);
623 }
624
625 Ok(View {
626 inner: FlatSamples {
627 samples: as_ref,
628 layout: self.layout,
629 color_hint: self.color_hint,
630 },
631 phantom: PhantomData,
632 })
633 }
634
635 /// View this buffer but keep mutability at a sample level.
636 ///
637 /// This is similar to `as_view` but subtly different from `as_view_mut`. The resulting type
638 /// can be used as a `GenericImage` with the same prior invariants needed as for `as_view`.
639 /// It can not be used as a mutable `GenericImage` but does not need channels to be packed in
640 /// their pixel representation.
641 ///
642 /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
643 /// buffer. It also checks that the specified pixel format expects the same number of channels
644 /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
645 /// There is no automatic conversion.
646 ///
647 /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
648 /// for one sample can in fact modify other samples as well. Sometimes exactly this is
649 /// intended.
650 pub fn as_view_with_mut_samples<P>(&mut self) -> Result<View<&mut [P::Subpixel], P>, Error>
651 where
652 P: Pixel,
653 Buffer: AsMut<[P::Subpixel]>,
654 {
655 if self.layout.channels != P::CHANNEL_COUNT {
656 return Err(Error::ChannelCountMismatch(
657 self.layout.channels,
658 P::CHANNEL_COUNT,
659 ));
660 }
661
662 let as_mut = self.samples.as_mut();
663 if !self.layout.fits(as_mut.len()) {
664 return Err(Error::TooLarge);
665 }
666
667 Ok(View {
668 inner: FlatSamples {
669 samples: as_mut,
670 layout: self.layout,
671 color_hint: self.color_hint,
672 },
673 phantom: PhantomData,
674 })
675 }
676
677 /// Interpret this buffer as a mutable image.
678 ///
679 /// To succeed, the pixels in this buffer may not alias each other and the samples of each
680 /// pixel must be packed (i.e. `channel_stride` is `1`). The number of channels must be
681 /// consistent with the channel count expected by the pixel format.
682 ///
683 /// This is similar to an `ImageBuffer` except it is a temporary view that is not normalized as
684 /// strongly. To get an owning version, consider copying the data into an `ImageBuffer`. This
685 /// provides many more operations, is possibly faster (if not you may want to open an issue) is
686 /// generally polished. You can also try to convert this buffer inline, see
687 /// `ImageBuffer::from_raw`.
688 pub fn as_view_mut<P>(&mut self) -> Result<ViewMut<&mut [P::Subpixel], P>, Error>
689 where
690 P: Pixel,
691 Buffer: AsMut<[P::Subpixel]>,
692 {
693 if !self.layout.is_normal(NormalForm::PixelPacked) {
694 return Err(Error::NormalFormRequired(NormalForm::PixelPacked));
695 }
696
697 if self.layout.channels != P::CHANNEL_COUNT {
698 return Err(Error::ChannelCountMismatch(
699 self.layout.channels,
700 P::CHANNEL_COUNT,
701 ));
702 }
703
704 let as_mut = self.samples.as_mut();
705 if !self.layout.fits(as_mut.len()) {
706 return Err(Error::TooLarge);
707 }
708
709 Ok(ViewMut {
710 inner: FlatSamples {
711 samples: as_mut,
712 layout: self.layout,
713 color_hint: self.color_hint,
714 },
715 phantom: PhantomData,
716 })
717 }
718
719 /// View the samples as a slice.
720 ///
721 /// The slice is not limited to the region of the image and not all sample indices are valid
722 /// indices into this buffer. See `image_mut_slice` as an alternative.
723 pub fn as_slice<T>(&self) -> &[T]
724 where
725 Buffer: AsRef<[T]>,
726 {
727 self.samples.as_ref()
728 }
729
730 /// View the samples as a slice.
731 ///
732 /// The slice is not limited to the region of the image and not all sample indices are valid
733 /// indices into this buffer. See `image_mut_slice` as an alternative.
734 pub fn as_mut_slice<T>(&mut self) -> &mut [T]
735 where
736 Buffer: AsMut<[T]>,
737 {
738 self.samples.as_mut()
739 }
740
741 /// Return the portion of the buffer that holds sample values.
742 ///
743 /// This may fail when the coordinates in this image are either out-of-bounds of the underlying
744 /// buffer or can not be represented. Note that the slice may have holes that do not correspond
745 /// to any sample in the image represented by it.
746 pub fn image_slice<T>(&self) -> Option<&[T]>
747 where
748 Buffer: AsRef<[T]>,
749 {
750 let min_length = self.min_length()?;
751
752 let slice = self.samples.as_ref();
753 if slice.len() < min_length {
754 return None;
755 }
756
757 Some(&slice[..min_length])
758 }
759
760 /// Mutable portion of the buffer that holds sample values.
761 pub fn image_mut_slice<T>(&mut self) -> Option<&mut [T]>
762 where
763 Buffer: AsMut<[T]>,
764 {
765 let min_length = self.min_length()?;
766
767 let slice = self.samples.as_mut();
768 if slice.len() < min_length {
769 return None;
770 }
771
772 Some(&mut slice[..min_length])
773 }
774
775 /// Move the data into an image buffer.
776 ///
777 /// This does **not** convert the sample layout. The buffer needs to be in packed row-major form
778 /// before calling this function. In case of an error, returns the buffer again so that it does
779 /// not release any allocation.
780 pub fn try_into_buffer<P>(self) -> Result<ImageBuffer<P, Buffer>, (Error, Self)>
781 where
782 P: Pixel + 'static,
783 P::Subpixel: 'static,
784 Buffer: Deref<Target = [P::Subpixel]>,
785 {
786 if !self.is_normal(NormalForm::RowMajorPacked) {
787 return Err((Error::NormalFormRequired(NormalForm::RowMajorPacked), self));
788 }
789
790 if self.layout.channels != P::CHANNEL_COUNT {
791 return Err((
792 Error::ChannelCountMismatch(self.layout.channels, P::CHANNEL_COUNT),
793 self,
794 ));
795 }
796
797 if !self.fits(self.samples.deref().len()) {
798 return Err((Error::TooLarge, self));
799 }
800
801 Ok(
802 ImageBuffer::from_raw(self.layout.width, self.layout.height, self.samples)
803 .unwrap_or_else(|| {
804 panic!("Preconditions should have been ensured before conversion")
805 }),
806 )
807 }
808
809 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
810 ///
811 /// This method will allow zero strides, allowing compact representations of monochrome images.
812 /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
813 /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
814 /// other cases, the reasoning is slightly more involved.
815 ///
816 /// # Explanation
817 ///
818 /// Note that there is a difference between `min_length` and the index of the sample
819 /// 'one-past-the-end'. This is due to strides that may be larger than the dimension below.
820 ///
821 /// ## Example with holes
822 ///
823 /// Let's look at an example of a grayscale image with
824 /// * `width_stride = 1`
825 /// * `width = 2`
826 /// * `height_stride = 3`
827 /// * `height = 2`
828 ///
829 /// ```text
830 /// | x x | x x m | $
831 /// min_length m ^
832 /// ^ one-past-the-end $
833 /// ```
834 ///
835 /// The difference is also extreme for empty images with large strides. The one-past-the-end
836 /// sample index is still as large as the largest of these strides while `min_length = 0`.
837 ///
838 /// ## Example with aliasing
839 ///
840 /// The concept gets even more important when you allow samples to alias each other. Here we
841 /// have the buffer of a small grayscale image where this is the case, this time we will first
842 /// show the buffer and then the individual rows below.
843 ///
844 /// * `width_stride = 1`
845 /// * `width = 3`
846 /// * `height_stride = 2`
847 /// * `height = 2`
848 ///
849 /// ```text
850 /// 1 2 3 4 5 m
851 /// |1 2 3| row one
852 /// |3 4 5| row two
853 /// ^ m min_length
854 /// ^ ??? one-past-the-end
855 /// ```
856 ///
857 /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
858 /// dimension. That still points inside the image because `height*height_stride = 4` but also
859 /// `index_of(1, 2) = 4`.
860 pub fn min_length(&self) -> Option<usize> {
861 self.layout.min_length()
862 }
863
864 /// Check if a buffer of length `len` is large enough.
865 pub fn fits(&self, len: usize) -> bool {
866 self.layout.fits(len)
867 }
868
869 /// If there are any samples aliasing each other.
870 ///
871 /// If this is not the case, it would always be safe to allow mutable access to two different
872 /// samples at the same time. Otherwise, this operation would need additional checks. When one
873 /// dimension overflows `usize` with its stride we also consider this aliasing.
874 pub fn has_aliased_samples(&self) -> bool {
875 self.layout.has_aliased_samples()
876 }
877
878 /// Check if a buffer fulfills the requirements of a normal form.
879 ///
880 /// Certain conversions have preconditions on the structure of the sample buffer that are not
881 /// captured (by design) by the type system. These are then checked before the conversion. Such
882 /// checks can all be done in constant time and will not inspect the buffer content. You can
883 /// perform these checks yourself when the conversion is not required at this moment but maybe
884 /// still performed later.
885 pub fn is_normal(&self, form: NormalForm) -> bool {
886 self.layout.is_normal(form)
887 }
888
889 /// Check that the pixel and the channel index are in bounds.
890 ///
891 /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
892 /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
893 /// actually exists in memory, this property of course follows.
894 pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
895 self.layout.in_bounds(channel, x, y)
896 }
897
898 /// Resolve the index of a particular sample.
899 ///
900 /// `None` if the index is outside the bounds or does not fit into a `usize`.
901 pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
902 self.layout.index(channel, x, y)
903 }
904
905 /// Get the theoretical position of sample (x, y, channel).
906 ///
907 /// The 'check' is for overflow during index calculation, not that it is contained in the
908 /// image. Two samples may return the same index, even when one of them is out of bounds. This
909 /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
910 pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
911 self.layout.index_ignoring_bounds(channel, x, y)
912 }
913
914 /// Get an index provided it is inbouds.
915 ///
916 /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
917 /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
918 /// way, this method can not be unsafe.
919 pub fn in_bounds_index(&self, channel: u8, x: u32, y: u32) -> usize {
920 self.layout.in_bounds_index(channel, x, y)
921 }
922
923 /// Shrink the image to the minimum of current and given extents.
924 ///
925 /// This does not modify the strides, so that the resulting sample buffer may have holes
926 /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
927 /// samples had aliased each other before.
928 pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
929 self.layout.shrink_to(channels, width, height);
930 }
931}
932
933impl<'buf, Subpixel> FlatSamples<&'buf [Subpixel]> {
934 /// Create a monocolor image from a single pixel.
935 ///
936 /// This can be used as a very cheap source of a `GenericImageView` with an arbitrary number of
937 /// pixels of a single color, without any dynamic allocation.
938 ///
939 /// ## Examples
940 ///
941 /// ```
942 /// # fn paint_something<T>(_: T) {}
943 /// use image::{flat::FlatSamples, GenericImage, RgbImage, Rgb};
944 ///
945 /// let background = Rgb([20, 20, 20]);
946 /// let bg = FlatSamples::with_monocolor(&background, 200, 200);
947 ///
948 /// let mut image = RgbImage::new(200, 200);
949 /// paint_something(&mut image);
950 ///
951 /// // Reset the canvas
952 /// image.copy_from(&bg.as_view().unwrap(), 0, 0);
953 /// ```
954 pub fn with_monocolor<P>(pixel: &'buf P, width: u32, height: u32) -> Self
955 where
956 P: Pixel<Subpixel = Subpixel>,
957 Subpixel: crate::Primitive,
958 {
959 FlatSamples {
960 samples: pixel.channels(),
961 layout: SampleLayout {
962 channels: P::CHANNEL_COUNT,
963 channel_stride: 1,
964 width,
965 width_stride: 0,
966 height,
967 height_stride: 0,
968 },
969
970 // TODO this value is never set. It should be set in all places where the Pixel type implements PixelWithColorType
971 color_hint: None,
972 }
973 }
974}
975
976/// A flat buffer that can be used as an image view.
977///
978/// This is a nearly trivial wrapper around a buffer but at least sanitizes by checking the buffer
979/// length first and constraining the pixel type.
980///
981/// Note that this does not eliminate panics as the `AsRef<[T]>` implementation of `Buffer` may be
982/// unreliable, i.e. return different buffers at different times. This of course is a non-issue for
983/// all common collections where the bounds check once must be enough.
984///
985/// # Inner invariants
986///
987/// * For all indices inside bounds, the corresponding index is valid in the buffer
988/// * `P::channel_count()` agrees with `self.inner.layout.channels`
989#[derive(Clone, Debug)]
990pub struct View<Buffer, P: Pixel>
991where
992 Buffer: AsRef<[P::Subpixel]>,
993{
994 inner: FlatSamples<Buffer>,
995 phantom: PhantomData<P>,
996}
997
998/// A mutable owning version of a flat buffer.
999///
1000/// While this wraps a buffer similar to `ImageBuffer`, this is mostly intended as a utility. The
1001/// library endorsed normalized representation is still `ImageBuffer`. Also, the implementation of
1002/// `AsMut<[P::Subpixel]>` must always yield the same buffer. Therefore there is no public way to
1003/// construct this with an owning buffer.
1004///
1005/// # Inner invariants
1006///
1007/// * For all indices inside bounds, the corresponding index is valid in the buffer
1008/// * There is no aliasing of samples
1009/// * The samples are packed, i.e. `self.inner.layout.sample_stride == 1`
1010/// * `P::channel_count()` agrees with `self.inner.layout.channels`
1011#[derive(Clone, Debug)]
1012pub struct ViewMut<Buffer, P: Pixel>
1013where
1014 Buffer: AsMut<[P::Subpixel]>,
1015{
1016 inner: FlatSamples<Buffer>,
1017 phantom: PhantomData<P>,
1018}
1019
1020/// Denotes invalid flat sample buffers when trying to convert to stricter types.
1021///
1022/// The biggest use case being `ImageBuffer` which expects closely packed
1023/// samples in a row major matrix representation. But this error type may be
1024/// reused for other import functions. A more versatile user may also try to
1025/// correct the underlying representation depending on the error variant.
1026#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
1027pub enum Error {
1028 /// The represented image was too large.
1029 ///
1030 /// The optional value denotes a possibly accepted maximal bound.
1031 TooLarge,
1032
1033 /// The represented image can not use this representation.
1034 ///
1035 /// Has an additional value of the normalized form that would be accepted.
1036 NormalFormRequired(NormalForm),
1037
1038 /// The color format did not match the channel count.
1039 ///
1040 /// In some cases you might be able to fix this by lowering the reported pixel count of the
1041 /// buffer without touching the strides.
1042 ///
1043 /// In very special circumstances you *may* do the opposite. This is **VERY** dangerous but not
1044 /// directly memory unsafe although that will likely alias pixels. One scenario is when you
1045 /// want to construct an `Rgba` image but have only 3 bytes per pixel and for some reason don't
1046 /// care about the value of the alpha channel even though you need `Rgba`.
1047 ChannelCountMismatch(u8, u8),
1048
1049 /// Deprecated - `ChannelCountMismatch` is used instead
1050 WrongColor(ColorType),
1051}
1052
1053/// Different normal forms of buffers.
1054///
1055/// A normal form is an unaliased buffer with some additional constraints. The `ÌmageBuffer` uses
1056/// row major form with packed samples.
1057#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
1058pub enum NormalForm {
1059 /// No pixel aliases another.
1060 ///
1061 /// Unaliased also guarantees that all index calculations in the image bounds using
1062 /// `dim_index*dim_stride` (such as `x*width_stride + y*height_stride`) do not overflow.
1063 Unaliased,
1064
1065 /// At least pixels are packed.
1066 ///
1067 /// Images of these types can wrap `[T]`-slices into the standard color types. This is a
1068 /// precondition for `GenericImage` which requires by-reference access to pixels.
1069 PixelPacked,
1070
1071 /// All samples are packed.
1072 ///
1073 /// This is orthogonal to `PixelPacked`. It requires that there are no holes in the image but
1074 /// it is not necessary that the pixel samples themselves are adjacent. An example of this
1075 /// behaviour is a planar image layout.
1076 ImagePacked,
1077
1078 /// The samples are in row-major form and all samples are packed.
1079 ///
1080 /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
1081 /// in row-major form.
1082 RowMajorPacked,
1083
1084 /// The samples are in column-major form and all samples are packed.
1085 ///
1086 /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
1087 /// in column-major form.
1088 ColumnMajorPacked,
1089}
1090
1091impl<Buffer, P: Pixel> View<Buffer, P>
1092where
1093 Buffer: AsRef<[P::Subpixel]>,
1094{
1095 /// Take out the sample buffer.
1096 ///
1097 /// Gives up the normalization invariants on the buffer format.
1098 pub fn into_inner(self) -> FlatSamples<Buffer> {
1099 self.inner
1100 }
1101
1102 /// Get a reference on the inner sample descriptor.
1103 ///
1104 /// There is no mutable counterpart as modifying the buffer format, including strides and
1105 /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
1106 /// if the inner buffer is the same as the buffer of the image from which this view was
1107 /// created. It might have been truncated as an optimization.
1108 pub fn flat(&self) -> &FlatSamples<Buffer> {
1109 &self.inner
1110 }
1111
1112 /// Get a reference on the inner buffer.
1113 ///
1114 /// There is no mutable counter part since it is not intended to allow you to reassign the
1115 /// buffer or otherwise change its size or properties.
1116 pub fn samples(&self) -> &Buffer {
1117 &self.inner.samples
1118 }
1119
1120 /// Get a reference to a selected subpixel if it is in-bounds.
1121 ///
1122 /// This method will return `None` when the sample is out-of-bounds. All errors that could
1123 /// occur due to overflow have been eliminated while construction the `View`.
1124 pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> {
1125 if !self.inner.in_bounds(channel, x, y) {
1126 return None;
1127 }
1128
1129 let index = self.inner.in_bounds_index(channel, x, y);
1130 // Should always be `Some(_)` but checking is more costly.
1131 self.samples().as_ref().get(index)
1132 }
1133
1134 /// Get a mutable reference to a selected subpixel if it is in-bounds.
1135 ///
1136 /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. This
1137 /// method will return `None` when the sample is out-of-bounds. All errors that could occur due
1138 /// to overflow have been eliminated while construction the `View`.
1139 ///
1140 /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
1141 /// here can in fact modify more than the coordinate in the argument.
1142 pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel>
1143 where
1144 Buffer: AsMut<[P::Subpixel]>,
1145 {
1146 if !self.inner.in_bounds(channel, x, y) {
1147 return None;
1148 }
1149
1150 let index = self.inner.in_bounds_index(channel, x, y);
1151 // Should always be `Some(_)` but checking is more costly.
1152 self.inner.samples.as_mut().get_mut(index)
1153 }
1154
1155 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
1156 ///
1157 /// See `FlatSamples::min_length`. This method will always succeed.
1158 pub fn min_length(&self) -> usize {
1159 self.inner.min_length().unwrap()
1160 }
1161
1162 /// Return the portion of the buffer that holds sample values.
1163 ///
1164 /// While this can not fail–the validity of all coordinates has been validated during the
1165 /// conversion from `FlatSamples`–the resulting slice may still contain holes.
1166 pub fn image_slice(&self) -> &[P::Subpixel] {
1167 &self.samples().as_ref()[..self.min_length()]
1168 }
1169
1170 /// Return the mutable portion of the buffer that holds sample values.
1171 ///
1172 /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. While
1173 /// this can not fail–the validity of all coordinates has been validated during the conversion
1174 /// from `FlatSamples`–the resulting slice may still contain holes.
1175 pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel]
1176 where
1177 Buffer: AsMut<[P::Subpixel]>,
1178 {
1179 let min_length = self.min_length();
1180 &mut self.inner.samples.as_mut()[..min_length]
1181 }
1182
1183 /// Shrink the inner image.
1184 ///
1185 /// The new dimensions will be the minimum of the previous dimensions. Since the set of
1186 /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
1187 /// Note that you can not change the number of channels as an intrinsic property of `P`.
1188 pub fn shrink_to(&mut self, width: u32, height: u32) {
1189 let channels = self.inner.layout.channels;
1190 self.inner.shrink_to(channels, width, height);
1191 }
1192
1193 /// Try to convert this into an image with mutable pixels.
1194 ///
1195 /// The resulting image implements `GenericImage` in addition to `GenericImageView`. While this
1196 /// has mutable samples, it does not enforce that pixel can not alias and that samples are
1197 /// packed enough for a mutable pixel reference. This is slightly cheaper than the chain
1198 /// `self.into_inner().as_view_mut()` and keeps the `View` alive on failure.
1199 ///
1200 /// ```
1201 /// # use image::RgbImage;
1202 /// # use image::Rgb;
1203 /// let mut buffer = RgbImage::new(480, 640).into_flat_samples();
1204 /// let view = buffer.as_view_with_mut_samples::<Rgb<u8>>().unwrap();
1205 ///
1206 /// // Inspect some pixels, …
1207 ///
1208 /// // Doesn't fail because it was originally an `RgbImage`.
1209 /// let view_mut = view.try_upgrade().unwrap();
1210 /// ```
1211 pub fn try_upgrade(self) -> Result<ViewMut<Buffer, P>, (Error, Self)>
1212 where
1213 Buffer: AsMut<[P::Subpixel]>,
1214 {
1215 if !self.inner.is_normal(NormalForm::PixelPacked) {
1216 return Err((Error::NormalFormRequired(NormalForm::PixelPacked), self));
1217 }
1218
1219 // No length check or channel count check required, all the same.
1220 Ok(ViewMut {
1221 inner: self.inner,
1222 phantom: PhantomData,
1223 })
1224 }
1225}
1226
1227impl<Buffer, P: Pixel> ViewMut<Buffer, P>
1228where
1229 Buffer: AsMut<[P::Subpixel]>,
1230{
1231 /// Take out the sample buffer.
1232 ///
1233 /// Gives up the normalization invariants on the buffer format.
1234 pub fn into_inner(self) -> FlatSamples<Buffer> {
1235 self.inner
1236 }
1237
1238 /// Get a reference on the sample buffer descriptor.
1239 ///
1240 /// There is no mutable counterpart as modifying the buffer format, including strides and
1241 /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
1242 /// if the inner buffer is the same as the buffer of the image from which this view was
1243 /// created. It might have been truncated as an optimization.
1244 pub fn flat(&self) -> &FlatSamples<Buffer> {
1245 &self.inner
1246 }
1247
1248 /// Get a reference on the inner buffer.
1249 ///
1250 /// There is no mutable counter part since it is not intended to allow you to reassign the
1251 /// buffer or otherwise change its size or properties. However, its contents can be accessed
1252 /// mutable through a slice with `image_mut_slice`.
1253 pub fn samples(&self) -> &Buffer {
1254 &self.inner.samples
1255 }
1256
1257 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
1258 ///
1259 /// See `FlatSamples::min_length`. This method will always succeed.
1260 pub fn min_length(&self) -> usize {
1261 self.inner.min_length().unwrap()
1262 }
1263
1264 /// Get a reference to a selected subpixel.
1265 ///
1266 /// This method will return `None` when the sample is out-of-bounds. All errors that could
1267 /// occur due to overflow have been eliminated while construction the `View`.
1268 pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel>
1269 where
1270 Buffer: AsRef<[P::Subpixel]>,
1271 {
1272 if !self.inner.in_bounds(channel, x, y) {
1273 return None;
1274 }
1275
1276 let index = self.inner.in_bounds_index(channel, x, y);
1277 // Should always be `Some(_)` but checking is more costly.
1278 self.samples().as_ref().get(index)
1279 }
1280
1281 /// Get a mutable reference to a selected sample.
1282 ///
1283 /// This method will return `None` when the sample is out-of-bounds. All errors that could
1284 /// occur due to overflow have been eliminated while construction the `View`.
1285 pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> {
1286 if !self.inner.in_bounds(channel, x, y) {
1287 return None;
1288 }
1289
1290 let index = self.inner.in_bounds_index(channel, x, y);
1291 // Should always be `Some(_)` but checking is more costly.
1292 self.inner.samples.as_mut().get_mut(index)
1293 }
1294
1295 /// Return the portion of the buffer that holds sample values.
1296 ///
1297 /// While this can not fail–the validity of all coordinates has been validated during the
1298 /// conversion from `FlatSamples`–the resulting slice may still contain holes.
1299 pub fn image_slice(&self) -> &[P::Subpixel]
1300 where
1301 Buffer: AsRef<[P::Subpixel]>,
1302 {
1303 &self.inner.samples.as_ref()[..self.min_length()]
1304 }
1305
1306 /// Return the mutable buffer that holds sample values.
1307 pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] {
1308 let length = self.min_length();
1309 &mut self.inner.samples.as_mut()[..length]
1310 }
1311
1312 /// Shrink the inner image.
1313 ///
1314 /// The new dimensions will be the minimum of the previous dimensions. Since the set of
1315 /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
1316 /// Note that you can not change the number of channels as an intrinsic property of `P`.
1317 pub fn shrink_to(&mut self, width: u32, height: u32) {
1318 let channels = self.inner.layout.channels;
1319 self.inner.shrink_to(channels, width, height);
1320 }
1321}
1322
1323// The out-of-bounds panic for single sample access similar to `slice::index`.
1324#[inline(never)]
1325#[cold]
1326fn panic_cwh_out_of_bounds(
1327 (c, x, y): (u8, u32, u32),
1328 bounds: (u8, u32, u32),
1329 strides: (usize, usize, usize),
1330) -> ! {
1331 panic!(
1332 "Sample coordinates {:?} out of sample matrix bounds {:?} with strides {:?}",
1333 (c, x, y),
1334 bounds,
1335 strides
1336 )
1337}
1338
1339// The out-of-bounds panic for pixel access similar to `slice::index`.
1340#[inline(never)]
1341#[cold]
1342fn panic_pixel_out_of_bounds((x, y): (u32, u32), bounds: (u32, u32)) -> ! {
1343 panic!("Image index {:?} out of bounds {:?}", (x, y), bounds)
1344}
1345
1346impl<Buffer> Index<(u8, u32, u32)> for FlatSamples<Buffer>
1347where
1348 Buffer: Index<usize>,
1349{
1350 type Output = Buffer::Output;
1351
1352 /// Return a reference to a single sample at specified coordinates.
1353 ///
1354 /// # Panics
1355 ///
1356 /// When the coordinates are out of bounds or the index calculation fails.
1357 fn index(&self, (c, x, y): (u8, u32, u32)) -> &Self::Output {
1358 let bounds = self.bounds();
1359 let strides = self.strides_cwh();
1360 let index = self
1361 .index(c, x, y)
1362 .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
1363 &self.samples[index]
1364 }
1365}
1366
1367impl<Buffer> IndexMut<(u8, u32, u32)> for FlatSamples<Buffer>
1368where
1369 Buffer: IndexMut<usize>,
1370{
1371 /// Return a mutable reference to a single sample at specified coordinates.
1372 ///
1373 /// # Panics
1374 ///
1375 /// When the coordinates are out of bounds or the index calculation fails.
1376 fn index_mut(&mut self, (c, x, y): (u8, u32, u32)) -> &mut Self::Output {
1377 let bounds = self.bounds();
1378 let strides = self.strides_cwh();
1379 let index = self
1380 .index(c, x, y)
1381 .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
1382 &mut self.samples[index]
1383 }
1384}
1385
1386impl<Buffer, P: Pixel> GenericImageView for View<Buffer, P>
1387where
1388 Buffer: AsRef<[P::Subpixel]>,
1389{
1390 type Pixel = P;
1391
1392 fn dimensions(&self) -> (u32, u32) {
1393 (self.inner.layout.width, self.inner.layout.height)
1394 }
1395
1396 fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
1397 if !self.inner.in_bounds(0, x, y) {
1398 panic_pixel_out_of_bounds((x, y), self.dimensions())
1399 }
1400
1401 let image = self.inner.samples.as_ref();
1402 let base_index = self.inner.in_bounds_index(0, x, y);
1403 let channels = P::CHANNEL_COUNT as usize;
1404
1405 let mut buffer = [Zero::zero(); 256];
1406 buffer
1407 .iter_mut()
1408 .enumerate()
1409 .take(channels)
1410 .for_each(|(c, to)| {
1411 let index = base_index + c * self.inner.layout.channel_stride;
1412 *to = image[index];
1413 });
1414
1415 *P::from_slice(&buffer[..channels])
1416 }
1417}
1418
1419impl<Buffer, P: Pixel> GenericImageView for ViewMut<Buffer, P>
1420where
1421 Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
1422{
1423 type Pixel = P;
1424
1425 fn dimensions(&self) -> (u32, u32) {
1426 (self.inner.layout.width, self.inner.layout.height)
1427 }
1428
1429 fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
1430 if !self.inner.in_bounds(0, x, y) {
1431 panic_pixel_out_of_bounds((x, y), self.dimensions())
1432 }
1433
1434 let image = self.inner.samples.as_ref();
1435 let base_index = self.inner.in_bounds_index(0, x, y);
1436 let channels = P::CHANNEL_COUNT as usize;
1437
1438 let mut buffer = [Zero::zero(); 256];
1439 buffer
1440 .iter_mut()
1441 .enumerate()
1442 .take(channels)
1443 .for_each(|(c, to)| {
1444 let index = base_index + c * self.inner.layout.channel_stride;
1445 *to = image[index];
1446 });
1447
1448 *P::from_slice(&buffer[..channels])
1449 }
1450}
1451
1452impl<Buffer, P: Pixel> GenericImage for ViewMut<Buffer, P>
1453where
1454 Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
1455{
1456 fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
1457 if !self.inner.in_bounds(0, x, y) {
1458 panic_pixel_out_of_bounds((x, y), self.dimensions())
1459 }
1460
1461 let base_index = self.inner.in_bounds_index(0, x, y);
1462 let channel_count = <P as Pixel>::CHANNEL_COUNT as usize;
1463 let pixel_range = base_index..base_index + channel_count;
1464 P::from_slice_mut(&mut self.inner.samples.as_mut()[pixel_range])
1465 }
1466
1467 #[allow(deprecated)]
1468 fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
1469 *self.get_pixel_mut(x, y) = pixel;
1470 }
1471
1472 #[allow(deprecated)]
1473 fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
1474 self.get_pixel_mut(x, y).blend(&pixel);
1475 }
1476}
1477
1478impl From<Error> for ImageError {
1479 fn from(error: Error) -> ImageError {
1480 #[derive(Debug)]
1481 struct NormalFormRequiredError(NormalForm);
1482 impl fmt::Display for NormalFormRequiredError {
1483 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1484 write!(f, "Required sample buffer in normal form {:?}", self.0)
1485 }
1486 }
1487 impl error::Error for NormalFormRequiredError {}
1488
1489 match error {
1490 Error::TooLarge => ImageError::Parameter(ParameterError::from_kind(
1491 ParameterErrorKind::DimensionMismatch,
1492 )),
1493 Error::NormalFormRequired(form) => ImageError::Decoding(DecodingError::new(
1494 ImageFormatHint::Unknown,
1495 NormalFormRequiredError(form),
1496 )),
1497 Error::ChannelCountMismatch(_lc, _pc) => ImageError::Parameter(
1498 ParameterError::from_kind(ParameterErrorKind::DimensionMismatch),
1499 ),
1500 Error::WrongColor(color) => {
1501 ImageError::Unsupported(UnsupportedError::from_format_and_kind(
1502 ImageFormatHint::Unknown,
1503 UnsupportedErrorKind::Color(color.into()),
1504 ))
1505 }
1506 }
1507 }
1508}
1509
1510impl fmt::Display for Error {
1511 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1512 match self {
1513 Error::TooLarge => write!(f, "The layout is too large"),
1514 Error::NormalFormRequired(form) => write!(
1515 f,
1516 "The layout needs to {}",
1517 match form {
1518 NormalForm::ColumnMajorPacked => "be packed and in column major form",
1519 NormalForm::ImagePacked => "be fully packed",
1520 NormalForm::PixelPacked => "have packed pixels",
1521 NormalForm::RowMajorPacked => "be packed and in row major form",
1522 NormalForm::Unaliased => "not have any aliasing channels",
1523 }
1524 ),
1525 Error::ChannelCountMismatch(layout_channels, pixel_channels) => {
1526 write!(f, "The channel count of the chosen pixel (={pixel_channels}) does agree with the layout (={layout_channels})")
1527 }
1528 Error::WrongColor(color) => {
1529 write!(f, "The chosen color type does not match the hint {color:?}")
1530 }
1531 }
1532 }
1533}
1534
1535impl error::Error for Error {}
1536
1537impl PartialOrd for NormalForm {
1538 /// Compares the logical preconditions.
1539 ///
1540 /// `a < b` if the normal form `a` has less preconditions than `b`.
1541 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
1542 match (*self, *other) {
1543 (NormalForm::Unaliased, NormalForm::Unaliased) => Some(cmp::Ordering::Equal),
1544 (NormalForm::PixelPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Equal),
1545 (NormalForm::ImagePacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Equal),
1546 (NormalForm::RowMajorPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Equal),
1547 (NormalForm::ColumnMajorPacked, NormalForm::ColumnMajorPacked) => {
1548 Some(cmp::Ordering::Equal)
1549 }
1550
1551 (NormalForm::Unaliased, _) => Some(cmp::Ordering::Less),
1552 (_, NormalForm::Unaliased) => Some(cmp::Ordering::Greater),
1553
1554 (NormalForm::PixelPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
1555 (NormalForm::PixelPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
1556 (NormalForm::RowMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater),
1557 (NormalForm::ColumnMajorPacked, NormalForm::PixelPacked) => {
1558 Some(cmp::Ordering::Greater)
1559 }
1560
1561 (NormalForm::ImagePacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
1562 (NormalForm::ImagePacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
1563 (NormalForm::RowMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater),
1564 (NormalForm::ColumnMajorPacked, NormalForm::ImagePacked) => {
1565 Some(cmp::Ordering::Greater)
1566 }
1567
1568 (NormalForm::ImagePacked, NormalForm::PixelPacked) => None,
1569 (NormalForm::PixelPacked, NormalForm::ImagePacked) => None,
1570 (NormalForm::RowMajorPacked, NormalForm::ColumnMajorPacked) => None,
1571 (NormalForm::ColumnMajorPacked, NormalForm::RowMajorPacked) => None,
1572 }
1573 }
1574}
1575
1576#[cfg(test)]
1577mod tests {
1578 use super::*;
1579 use crate::buffer_::GrayAlphaImage;
1580 use crate::color::{LumaA, Rgb};
1581
1582 #[test]
1583 fn aliasing_view() {
1584 let buffer = FlatSamples {
1585 samples: &[42],
1586 layout: SampleLayout {
1587 channels: 3,
1588 channel_stride: 0,
1589 width: 100,
1590 width_stride: 0,
1591 height: 100,
1592 height_stride: 0,
1593 },
1594 color_hint: None,
1595 };
1596
1597 let view = buffer.as_view::<Rgb<u8>>().expect("This is a valid view");
1598 let pixel_count = view
1599 .pixels()
1600 .inspect(|pixel| assert!(pixel.2 == Rgb([42, 42, 42])))
1601 .count();
1602 assert_eq!(pixel_count, 100 * 100);
1603 }
1604
1605 #[test]
1606 fn mutable_view() {
1607 let mut buffer = FlatSamples {
1608 samples: [0; 18],
1609 layout: SampleLayout {
1610 channels: 2,
1611 channel_stride: 1,
1612 width: 3,
1613 width_stride: 2,
1614 height: 3,
1615 height_stride: 6,
1616 },
1617 color_hint: None,
1618 };
1619
1620 {
1621 let mut view = buffer
1622 .as_view_mut::<LumaA<u16>>()
1623 .expect("This should be a valid mutable buffer");
1624 assert_eq!(view.dimensions(), (3, 3));
1625 #[allow(deprecated)]
1626 for i in 0..9 {
1627 *view.get_pixel_mut(i % 3, i / 3) = LumaA([2 * i as u16, 2 * i as u16 + 1]);
1628 }
1629 }
1630
1631 buffer
1632 .samples
1633 .iter()
1634 .enumerate()
1635 .for_each(|(idx, sample)| assert_eq!(idx, *sample as usize));
1636 }
1637
1638 #[test]
1639 fn normal_forms() {
1640 assert!(FlatSamples {
1641 samples: [0u8; 0],
1642 layout: SampleLayout {
1643 channels: 2,
1644 channel_stride: 1,
1645 width: 3,
1646 width_stride: 9,
1647 height: 3,
1648 height_stride: 28,
1649 },
1650 color_hint: None,
1651 }
1652 .is_normal(NormalForm::PixelPacked));
1653
1654 assert!(FlatSamples {
1655 samples: [0u8; 0],
1656 layout: SampleLayout {
1657 channels: 2,
1658 channel_stride: 8,
1659 width: 4,
1660 width_stride: 1,
1661 height: 2,
1662 height_stride: 4,
1663 },
1664 color_hint: None,
1665 }
1666 .is_normal(NormalForm::ImagePacked));
1667
1668 assert!(FlatSamples {
1669 samples: [0u8; 0],
1670 layout: SampleLayout {
1671 channels: 2,
1672 channel_stride: 1,
1673 width: 4,
1674 width_stride: 2,
1675 height: 2,
1676 height_stride: 8,
1677 },
1678 color_hint: None,
1679 }
1680 .is_normal(NormalForm::RowMajorPacked));
1681
1682 assert!(FlatSamples {
1683 samples: [0u8; 0],
1684 layout: SampleLayout {
1685 channels: 2,
1686 channel_stride: 1,
1687 width: 4,
1688 width_stride: 4,
1689 height: 2,
1690 height_stride: 2,
1691 },
1692 color_hint: None,
1693 }
1694 .is_normal(NormalForm::ColumnMajorPacked));
1695 }
1696
1697 #[test]
1698 fn image_buffer_conversion() {
1699 let expected_layout = SampleLayout {
1700 channels: 2,
1701 channel_stride: 1,
1702 width: 4,
1703 width_stride: 2,
1704 height: 2,
1705 height_stride: 8,
1706 };
1707
1708 let initial = GrayAlphaImage::new(expected_layout.width, expected_layout.height);
1709 let buffer = initial.into_flat_samples();
1710
1711 assert_eq!(buffer.layout, expected_layout);
1712
1713 let _: GrayAlphaImage = buffer.try_into_buffer().unwrap_or_else(|(error, _)| {
1714 panic!("Expected buffer to be convertible but {:?}", error)
1715 });
1716 }
1717}