ncollide3d/shape/triangle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
//! Definition of the triangle shape.
use crate::math::{Isometry, Point, Vector};
use crate::shape::Segment;
use crate::shape::SupportMap;
#[cfg(feature = "dim3")]
use crate::shape::{ConvexPolygonalFeature, ConvexPolyhedron, FeatureId};
use na::RealField;
use na::{self, Unit};
#[cfg(feature = "dim3")]
use std::f64;
use std::mem;
/// A triangle shape.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(C)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Triangle<N: RealField + Copy> {
/// The triangle first point.
pub a: Point<N>,
/// The triangle second point.
pub b: Point<N>,
/// The triangle third point.
pub c: Point<N>,
}
/// Description of the location of a point on a triangle.
#[derive(Copy, Clone, Debug)]
pub enum TrianglePointLocation<N: RealField + Copy> {
/// The point lies on a vertex.
OnVertex(usize),
/// The point lies on an edge.
///
/// The 0-st edge is the segment AB.
/// The 1-st edge is the segment BC.
/// The 2-nd edge is the segment AC.
// XXX: it appears the conversion of edge indexing here does not match the
// convension of edge indexing for the `fn edge` method (from the ConvexPolyhedron impl).
OnEdge(usize, [N; 2]),
/// The point lies on the triangle interior.
///
/// The integer indicates on which side of the face the point is. 0 indicates the point
/// is on the half-space toward the CW normal of the triangle. 1 indicates the point is on the other
/// half-space. This is always set to 0 in 2D.
OnFace(usize, [N; 3]),
/// The point lies on the triangle interior (for "solid" point queries).
OnSolid,
}
impl<N: RealField + Copy> TrianglePointLocation<N> {
/// The barycentric coordinates corresponding to this point location.
///
/// Returns `None` if the location is `TrianglePointLocation::OnSolid`.
pub fn barycentric_coordinates(&self) -> Option<[N; 3]> {
let mut bcoords = [N::zero(); 3];
match self {
TrianglePointLocation::OnVertex(i) => bcoords[*i] = N::one(),
TrianglePointLocation::OnEdge(i, uv) => {
let idx = match i {
0 => (0, 1),
1 => (1, 2),
2 => (0, 2),
_ => unreachable!(),
};
bcoords[idx.0] = uv[0];
bcoords[idx.1] = uv[1];
}
TrianglePointLocation::OnFace(_, uvw) => {
bcoords[0] = uvw[0];
bcoords[1] = uvw[1];
bcoords[2] = uvw[2];
}
TrianglePointLocation::OnSolid => {
return None;
}
}
Some(bcoords)
}
/// Returns `true` if the point is located on the relative interior of the triangle.
pub fn is_on_face(&self) -> bool {
if let TrianglePointLocation::OnFace(..) = *self {
true
} else {
false
}
}
}
impl<N: RealField + Copy> Triangle<N> {
/// Creates a triangle from three points.
#[inline]
pub fn new(a: Point<N>, b: Point<N>, c: Point<N>) -> Triangle<N> {
Triangle { a, b, c }
}
/// Creates the reference to a triangle from the reference to an array of three points.
pub fn from_array(arr: &[Point<N>; 3]) -> &Triangle<N> {
unsafe { mem::transmute(arr) }
}
/// The fist point of this triangle.
#[inline]
#[deprecated(note = "use the `self.a` public field directly.")]
pub fn a(&self) -> &Point<N> {
&self.a
}
/// The second point of this triangle.
#[inline]
#[deprecated(note = "use the `self.b` public field directly.")]
pub fn b(&self) -> &Point<N> {
&self.b
}
/// The third point of this triangle.
#[inline]
#[deprecated(note = "use the `self.c` public field directly.")]
pub fn c(&self) -> &Point<N> {
&self.c
}
/// Reference to an array containing the three vertices of this triangle.
#[inline]
pub fn vertices(&self) -> &[Point<N>; 3] {
unsafe { mem::transmute(self) }
}
/// The normal of this triangle assuming it is oriented ccw.
///
/// The normal points such that it is collinear to `AB × AC` (where `×` denotes the cross
/// product).
#[inline]
pub fn normal(&self) -> Option<Unit<Vector<N>>> {
Unit::try_new(self.scaled_normal(), N::default_epsilon())
}
/// The three edges of this triangle: [AB, BC, CA].
#[inline]
pub fn edges(&self) -> [Segment<N>; 3] {
[
Segment::new(self.a, self.b),
Segment::new(self.b, self.c),
Segment::new(self.c, self.a),
]
}
/// Returns a new triangle with vertices transformed by `m`.
#[inline]
pub fn transformed(&self, m: &Isometry<N>) -> Self {
Triangle::new(m * self.a, m * self.b, m * self.c)
}
/// The three edges scaled directions of this triangle: [B - A, C - B, A - C].
#[inline]
pub fn edges_scaled_directions(&self) -> [Vector<N>; 3] {
[self.b - self.a, self.c - self.b, self.a - self.c]
}
/// A vector normal of this triangle.
///
/// The vector points such that it is collinear to `AB × AC` (where `×` denotes the cross
/// product).
#[inline]
pub fn scaled_normal(&self) -> Vector<N> {
let ab = self.b - self.a;
let ac = self.c - self.a;
ab.cross(&ac)
}
/// Computes the extents of this triangle on the given direction.
///
/// This computes the min and max values of the dot products between each
/// vertex of this triangle and `dir`.
#[inline]
pub fn extents_on_dir(&self, dir: &Unit<Vector<N>>) -> (N, N) {
let a = self.a.coords.dot(dir);
let b = self.b.coords.dot(dir);
let c = self.c.coords.dot(dir);
if a > b {
if b > c {
(c, a)
} else if a > c {
(b, a)
} else {
(b, c)
}
} else {
// b >= a
if a > c {
(c, b)
} else if b > c {
(a, b)
} else {
(a, c)
}
}
}
/// Checks that the given direction in world-space is on the tangent cone of the given `feature`.
#[cfg(feature = "dim3")]
#[inline]
pub fn tangent_cone_contains_dir(
&self,
feature: FeatureId,
m: &Isometry<N>,
dir: &Unit<Vector<N>>,
) -> bool {
let ls_dir = m.inverse_transform_vector(dir);
if let Some(normal) = self.normal() {
match feature {
FeatureId::Vertex(_) => {
// FIXME: for now we assume since the triangle has no thickness,
// the case where `dir` is coplanar with the triangle never happens.
false
}
FeatureId::Edge(_) => {
// FIXME: for now we assume since the triangle has no thickness,
// the case where `dir` is coplanar with the triangle never happens.
false
}
FeatureId::Face(0) => ls_dir.dot(&normal) <= N::zero(),
FeatureId::Face(1) => ls_dir.dot(&normal) >= N::zero(),
_ => panic!("Invalid feature ID."),
}
} else {
false
}
}
#[cfg(feature = "dim3")]
fn support_feature_id_toward(&self, local_dir: &Unit<Vector<N>>, eps: N) -> FeatureId {
if let Some(normal) = self.normal() {
let (seps, ceps) = eps.sin_cos();
let normal_dot = local_dir.dot(&*normal);
if normal_dot >= ceps {
FeatureId::Face(0)
} else if normal_dot <= -ceps {
FeatureId::Face(1)
} else {
let edges = self.edges();
let mut dots = [N::zero(); 3];
let dir1 = edges[0].direction();
if let Some(dir1) = dir1 {
dots[0] = dir1.dot(local_dir);
if dots[0].abs() < seps {
return FeatureId::Edge(0);
}
}
let dir2 = edges[1].direction();
if let Some(dir2) = dir2 {
dots[1] = dir2.dot(local_dir);
if dots[1].abs() < seps {
return FeatureId::Edge(1);
}
}
let dir3 = edges[2].direction();
if let Some(dir3) = dir3 {
dots[2] = dir3.dot(local_dir);
if dots[2].abs() < seps {
return FeatureId::Edge(2);
}
}
if dots[0] > N::zero() && dots[1] < N::zero() {
FeatureId::Vertex(1)
} else if dots[1] > N::zero() && dots[2] < N::zero() {
FeatureId::Vertex(2)
} else {
FeatureId::Vertex(0)
}
}
} else {
FeatureId::Vertex(0)
}
}
}
impl<N: RealField + Copy> SupportMap<N> for Triangle<N> {
#[inline]
fn local_support_point(&self, dir: &Vector<N>) -> Point<N> {
let d1 = self.a.coords.dot(dir);
let d2 = self.b.coords.dot(dir);
let d3 = self.c.coords.dot(dir);
if d1 > d2 {
if d1 > d3 {
self.a
} else {
self.c
}
} else {
if d2 > d3 {
self.b
} else {
self.c
}
}
}
}
#[cfg(feature = "dim3")]
impl<N: RealField + Copy> ConvexPolyhedron<N> for Triangle<N> {
fn vertex(&self, id: FeatureId) -> Point<N> {
match id.unwrap_vertex() {
0 => self.a,
1 => self.b,
2 => self.c,
_ => panic!("Triangle vertex index out of bounds."),
}
}
fn edge(&self, id: FeatureId) -> (Point<N>, Point<N>, FeatureId, FeatureId) {
match id.unwrap_edge() {
0 => (self.a, self.b, FeatureId::Vertex(0), FeatureId::Vertex(1)),
1 => (self.b, self.c, FeatureId::Vertex(1), FeatureId::Vertex(2)),
2 => (self.c, self.a, FeatureId::Vertex(2), FeatureId::Vertex(0)),
_ => panic!("Triangle edge index out of bounds."),
}
}
fn face(&self, id: FeatureId, face: &mut ConvexPolygonalFeature<N>) {
face.clear();
if let Some(normal) = self.normal() {
face.set_feature_id(id);
match id.unwrap_face() {
0 => {
face.push(self.a, FeatureId::Vertex(0));
face.push(self.b, FeatureId::Vertex(1));
face.push(self.c, FeatureId::Vertex(2));
face.push_edge_feature_id(FeatureId::Edge(0));
face.push_edge_feature_id(FeatureId::Edge(1));
face.push_edge_feature_id(FeatureId::Edge(2));
face.set_normal(normal);
}
1 => {
face.push(self.a, FeatureId::Vertex(0));
face.push(self.c, FeatureId::Vertex(2));
face.push(self.b, FeatureId::Vertex(1));
face.push_edge_feature_id(FeatureId::Edge(2));
face.push_edge_feature_id(FeatureId::Edge(1));
face.push_edge_feature_id(FeatureId::Edge(0));
face.set_normal(-normal);
}
_ => unreachable!(),
}
face.recompute_edge_normals();
} else {
face.push(self.a, FeatureId::Vertex(0));
face.set_feature_id(FeatureId::Vertex(0));
}
}
fn feature_normal(&self, _: FeatureId) -> Unit<Vector<N>> {
if let Some(normal) = self.normal() {
// FIXME: We should be able to do much better here.
normal
} else {
Vector::y_axis()
}
}
fn support_face_toward(
&self,
m: &Isometry<N>,
dir: &Unit<Vector<N>>,
face: &mut ConvexPolygonalFeature<N>,
) {
let normal = self.scaled_normal();
if normal.dot(&*dir) >= na::zero() {
ConvexPolyhedron::<N>::face(self, FeatureId::Face(0), face);
} else {
ConvexPolyhedron::<N>::face(self, FeatureId::Face(1), face);
}
face.transform_by(m)
}
fn support_feature_toward(
&self,
transform: &Isometry<N>,
dir: &Unit<Vector<N>>,
eps: N,
out: &mut ConvexPolygonalFeature<N>,
) {
out.clear();
let tri = self.transformed(transform);
let feature = tri.support_feature_id_toward(dir, eps);
match feature {
FeatureId::Vertex(_) => {
let v = tri.vertex(feature);
out.push(v, feature);
out.set_feature_id(feature);
}
FeatureId::Edge(_) => {
let (a, b, fa, fb) = tri.edge(feature);
out.push(a, fa);
out.push(b, fb);
out.push_edge_feature_id(feature);
out.set_feature_id(feature);
}
FeatureId::Face(_) => tri.face(feature, out),
_ => unreachable!(),
}
}
fn support_feature_id_toward(&self, local_dir: &Unit<Vector<N>>) -> FeatureId {
self.support_feature_id_toward(local_dir, na::convert(f64::consts::PI / 180.0))
}
}